Journal of Quantum Optics, Volume. 29, Issue 1, 10101(2023)

Light with Strong Antibunching using Displaced Squeezed Vacuum State

LI Jing1, ZUO Guan-hua1, GUO Yan-qiang2, ZHANG Yu-chi1、*, and ZHANG Tian-cai3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(42)

    [1] [1] SPRING J B, MENNEA P L, METCALF B J, et al. Chip-based array of near-identical, pure, heralded single-photon sources[J]. Optica, 2016, 4(1):90-96. DOI: 10.1364/OPTICA.4.000090.

    [2] [2] SCHWARTZ O, ORON D. Improved resolution in fluorescence microscopy using quantum correlations[J]. Physical Review A, 2012, 85(3):033812. DOI: 10.1103/PhysRevA.85.033812.

    [3] [3] SCHWARTZ O, LEVITT J M, TENNE R, et al. Superresolution microscopy with quantum emitters[J]. Nano Letters, 2013, 13(12):5832-5836. DOI: 10.1021/nl402552m.

    [4] [4] MONTICONE D G, KATAMADZE K, TRAINA P, et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics[J]. Physical Review Letters, 2014, 113(14):143602. DOI: 10.1103/PhysRev Lett.113.143602.

    [5] [5] TENNE R, ROSSMAN U, REPHAEL B, et al. Super-resolution enhancement by quantum image scanning microscopy[J]. Nature Photonics, 2019, 13(8):116-122. DOI: 10.1038/s41566-018-0324-z.

    [6] [6] MOREAU P A, TONINELLI E, GREGORY T, et al. Imaging with quantum states of light[J]. Nature Reviews Physics, 2019, 1(7):367-380. DOI: 10.1038/s42254-019-0056-0.

    [7] [7] BOZYIGIT D, LANG C, STEFFEN L, et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors[J]. Nature Physics, 2011, 7(2):154-158. DOI: 10.1038/ nphys1845.

    [8] [8] ZHANG T C, POIZAT J P, GRELU P, et al. Quantum noise of free-running and externally-stabilized laser diodes[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1995, 7(4):601-613. DOI: 10.1088/1355-5111/7/4/015.

    [9] [9] ZHANG T C, HOU Z J, WANG J M, et al. Generation of intensity squeezing in laser diodes by weak external cavity feedback[J]. Chinese Physics Letters, 1996, 13(10):734-736. DOI: 10.1008/0256-307x/13/10/005.

    [11] [11] ZHANG J X, ZHANG T C, DONG R F, et al. Quantum measurements with an amplitude-squeezed-light beam splitter[J]. Applied Optics, 2001, 40(32):5949-5953. DOI: 10.1364/ao.40.005949.

    [12] [12] ZUO G H, ZHANG Y C, LI J, et al. Determination of weakly squeezed vacuum states through photon statistics measurement[J]. Physcis Letters A, 2022, 439:128133. DOI: 10.1016/j.physleta.2022.128133.

    [13] [13] ZHANG J, WANG J M, ZHANG T C. Optical Fock-state generation with large number of photons based on atoms coupled to an optical parametric oscillator[J]. JOSA B, 2012, 29(6):1473-1478. DOI: 10.1364/JOSAB.29.00 1473.

    [14] [14] YAN Z H, JIA X J, SU X L, et al. Cascaded entanglement enhancement[J]. Physical Review A, 2012, 85(4):040305. DOI: 10.1103/PhysRevA.85.040305.

    [15] [15] TAKASE K, YOSHIKAWA J, ASAVANANT W, et al. Generation of optical Schrdinger cat states by generalized photon subtraction[J]. Physical Review A, 2021, 103(1):013710. DOI: 10.1103/PhysRevA. 103.013710.

    [16] [16] WOLF S, RICHTER S, ZANTHIER J V, et al. Light of two atoms in free space: bunching or antibunching?[J]. Physical Review Letters, 2020, 124(6):063603. DOI: 10.1103/PhysRevLett.124.063603.

    [17] [17] VARNAVA M, BROWNE D E, RUDOLPH T. How good must single photon sources and detectors be for efficient linear optical quantum computation?[J]. Physical Review Letters, 2008, 100(6):060502. DOI: 10.1103/PhysRev Lett.100.060502.

    [18] [18] SPRENGERS J P, GAGGERO A, SAHIN D, et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits[J]. Applied Physics Letters, 2011, 99(18):181110. DOI: 10.1063/ 1.3657518.

    [19] [19] EISAMAN M D, FAN J, MIGDALL A L, et al. Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7):071101. DOI: 10.1063/1.3610677.

    [20] [20] LIU B, JIN G, HE J, et al. Suppression of single-cesium-atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source[J]. Physical Review A, 2016, 94(1):013409. DOI: 10.1103/PhysRevA.94.013409.

    [21] [21] MARTINI F D, GIUSEPPE G D, MARROCCO M. Single-mode generation of quantum photon states by excited single molecules in a microcavity trap[J]. Physical Review Letters, 1996, 76(6):900-903. DOI: 10.1103/PhysRev Lett.76.900.

    [22] [22] BEVERATORS A, BROURI R, GACOIN T, et al. Nonclassical radiation from diamond nanocrystals[J]. Physical Review A, 2001, 64(6):061802. DOI: 10.1103/PhysRevA.64.061802.

    [23] [23] LEIFGEN M, SCHRODER T, GADEKE F, et al. Evaluation of nitrogen-and silicon-vacancy defect centres as single photon sources in quantum key distribution[J]. New Journal of Physics, 2014, 16(2):023021. DOI: 10.1088/13 67-2630/16/2/023021.

    [24] [24] SIPAHIGIL A, JAHNKE K D, ROGERS L J, et al. Indistinguishable photons from separated silicon-vacancy centers in diamond[J]. Physical Review Letters, 2014, 113(11):113602. DOI: 10.1103/PhysRevLett. 113.113602.

    [25] [25] HE Y M, HE Y, WEI Y J, et al. On-demand semiconductor single-photon source with near-unity indistinguishability[J]. Nature Nanotechnology, 2013, 8(3):213-217. DOI: 10.1038/NNANO.2012.262.

    [26] [26] DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2):020401.DOI: 10.1103/PhysRevLett.116.020401.

    [27] [27] BIRNBAUM K M, BOCA A, MILLER R, et al. Photon blockade in an optical cavity with one trapped atom[J]. Nature, 2005, 436(7047):87-90. DOI: 10.1038/nature03804.

    [28] [28] RADULASKI M, FISCHER K A, LAGOUDAKIS K G, et al. Photon blockade in two-emitter-cavity systems[J]. Physical Review A, 2017, 96(1):011801. DOI: 10.1103/PhysRevA.96.011801.

    [29] [29] DAVID S. Photon antibunching and possible ways to observe it[J]. Physical Review Letters, 1974, 33(23):1397. DOI: 10.1103/PhysRevLett.33.1397.

    [30] [30] KOASHI M, KONO K, HIRANO T, et al. Photon antibunching in pulsed squeezed light generated via parametric amplification[J]. Physical Review Letters, 1993, 71(8):1164. DOI: 10.1103/PhysRevLett.71.1164.

    [31] [31] GROSSE N B, SYMUL T, STOBINSKA M, et al. Measuring photon antibunching from continuous variable sideband squeezing[J]. Physical Review Letters, 2007, 98(15):153603. DOI: 10.1103/PhysRevLett.98.153603.

    [32] [32] BODDEDA R, GLORIEUX Q, BRAMATI A, et al. Generating strong anti-bunching by interfering nonclassical and classical states of light[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52(21):215401. DOI: 10.1088/1361-6455/ab3e98.

    [33] [33] TIAN J F, ZUO G H, ZHANG Y C, et al. Generation of squeezed vacuum on cesium D2 line down to kilohertz range[J]. Chinese Physics B, 2017, 26(12):124206. DOI: 10.1088/1674-1056/26/12/124206.

    [34] [34] SUN X C, WANG Y J, TIAN L, et al. Detection of 13.8dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection[J]. Chinese Optics Letters, 2019, 17(7):072701. DOI: 10.3788/COL201917.072701.

    [35] [35] KOWALEWSKA-KUDLASZYK A, ABO S I, CHIMCZAK G, et al. Two-photon blockade and photon-induced tunneling generated by squeezing[J]. Physical Review A, 2019, 100(5):053857. DOI: 10.1103/ PhysRevA.100.053857.

    [36] [36] LEMONDE M A, DIDIER N, CLERK A A. Antibunching and unconventional photon blockade with Gaussian squeezed states[J]. Physical Review A, 2014, 90(6):063824. DOI: 10.1103/PhysRevA.90.063824.

    [37] [37] TWISS R Q, LITTLE A G, BROWN R H. Correlation between photons, in coherent beams of light, detected by a coincidence counting technique[J]. Nature, 1957, 180(4581):324-326. DOI: 10.1038/180324a0.

    [38] [38] SPERLING J, VOGEL W, AGARWAL G S. True photocounting statistics of multiple on-off detectors[J]. Physical Review A, 2012, 85(2):023820. DOI: 10.1103/PhysRevA.85.023820.

    [39] [39] SPERLING J, BOHMANN M, VOGEL W, et al. Uncovering quantum correlations with time-multiplexed click detection[J]. Physical Review Letters, 2015, 115(2):023601. DOI: 10.1103/PhysRevLett.115.023601.

    [40] [40] LI G, ZHANG T C, LI Y, et al. Photon statistics of light fields based on single-photon-counting modules[J]. Physical Review A, 2005, 71(2):023807. DOI: 10.1103/PhysRevA.71.023807.

    [41] [41] LI Y, LI G, ZHANG Y C, et al. Effects of counting rate and resolution time on a measurement of the intensity correlation function[J]. Physical Review A, 2007, 76(1):013829. DOI: 10.1103/PhysRevA. 76.013829.

    [42] [42] GUO Y Q, WANG L J, WANG Y, et al. High-order photon correlations through double Hanbury Brown-Twiss measurements[J]. Journal of Optics, 2020, 22(9):095202. DOI: 10.1088/2040-8986/aba3b6.

    [43] [43] FLAYAC H, SAVONA V. Unconventional photon blockade[J]. Physical Review A, 2017, 96(5):053810. DOI: 10.1103/PhysRevA.96.053810.

    Tools

    Get Citation

    Copy Citation Text

    LI Jing, ZUO Guan-hua, GUO Yan-qiang, ZHANG Yu-chi, ZHANG Tian-cai. Light with Strong Antibunching using Displaced Squeezed Vacuum State[J]. Journal of Quantum Optics, 2023, 29(1): 10101

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 18, 2022

    Accepted: --

    Published Online: Nov. 17, 2023

    The Author Email: ZHANG Yu-chi (yczhang@sxu.edu.cn)

    DOI:10.3788/jqo20232901.0101

    Topics