Chinese Journal of Lasers, Volume. 47, Issue 5, 0500003(2020)
Research Progress on Ultrafast Laser Filamentation
[1] Kasparian J. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).
[2] Kandidov V P, Kosareva O G, Golubtsov I S et al. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)[J]. Applied Physics B, 77, 149-165(2003).
[3] Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges[J]. Canadian Journal of Physics, 83, 863-905(2005).
[4] Chin S L, Théberge F, Liu W. Filamentation nonlinear optics[J]. Applied Physics B, 86, 477-483(2007).
[5] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).
[6] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).
[7] Kasparian J, Wolf J P. Physics and applications of atmospheric nonlinear optics and filamentation[J]. Optics Express, 16, 466-193(2008).
[9] Hercher M. Laser-induced damage in transparent media[J]. Journal of the Optical Society of America, 54, 563(1964).
[10] Chiao R Y, Garmire E, Townes C H. Self-trapping of optical beams[J]. Physical Review Letters, 13, 479-482(1964).
[11] Shen Y R. Self-focusing: experimental[J]. Progress in Quantum Electronics, 4, 1-34(1975).
[12] Marburger J H. Self-focusing: theory[J]. Progress in Quantum Electronics, 4, 35-110(1975).
[13] Marburrger J, Wagner W. Self-focusing as a pulse sharpening mechanism[J]. IEEE Journal of Quantum Electronics, 3, 415-416(1967).
[14] Lugovoǐ V N, Prokhorov A M. Theory of the propagation of high-power laser radiation in a nonlinear medium[J]. Soviet Physics Uspekhi, 16, 658-679(1974).
[15] Loy M M T, Shen Y R. Small-scale filaments in liquids and tracks of moving foci[J]. Physical Review Letters, 22, 994-997(1969).
[16] Loy M M T, Shen Y R. Experimental study of small-scale filaments of light in liquids[J]. Physical Review Letters, 25, 1333-1336(1970).
[17] Chin S L, Brodeur A, Petit S et al. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser)[J]. Journal of Nonlinear Optical Physics & Materials, 8, 121-146(1999).
[18] Yablonovitch E, Bloembergen N. Avalanche ionization and the limiting diameter of filaments induced by light pulses in transparent media[J]. Physical Review Letters, 29, 907-910(1972).
[19] Bloembergen N. The influence of electron plasma formation on superbroadening in light filaments[J]. Optics Communications, 8, 285-288(1973).
[20] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).
[21] Liu W, Chin S L. Direct measurement of the critical power of femtosecond Ti∶sapphire laser pulse in air[J]. Optics Express, 13, 5750-5755(2005).
[22] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).
[23] Yang H, Zhang J, Li Y J et al. Characteristics of self-guided laser plasma channels generated by femtosecond laser pulses in air[J]. Physical Review E, 66, 016406(2002).
[24] Brodeur A, Chien C Y, Ilkov F A et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 22, 304-306(1997).
[26] Proulx A, Talebpour A, Petit S et al. Fast pulsed electric field created from the self-generated filament of a femtosecond Ti∶Sapphire laser pulse in air[J]. Optics Communications, 174, 305-309(2000).
[27] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 68, 753-756(1999).
[28] Wang L F, Lu X, Teng H et al. Carrier-envelope phase-dependent electronic conductivity in an air filament driven by few-cycle laser pulses[J]. Physical Review A, 94, 013827(2016).
[29] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).
[30] Dicaire I, Jukna V, Praz C et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 10, 481-493(2016).
[31] Hauri C P, Kornelis W, Helbing F W et al. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Applied Physics B, 79, 673-677(2004).
[32] Chen X W, Leng Y X, Liu J et al. Pulse self-compression in normally dispersive bulk media[J]. Optics Communications, 259, 331-335(2006).
[33] Théberge F, Aközbek N, Liu W W et al. Tunable ultrashort laser pulses generated through filamentation in gases[J]. Physical Review Letters, 97, 023904(2006).
[35] Gravel J F, Luo Q, Boudreau D et al. Sensing of halocarbons using femtosecond laser-induced fluorescence[J]. Analytical Chemistry, 76, 4799-4805(2004).
[36] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).
[37] Chin S L, Xu H L, Luo Q et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).
[38] Xu H L, Chin S L. Femtosecond laser filamentation for atmospheric sensing[J]. Sensors, 11, 32-53(2010).
[39] Ju J J, Liu J S, Wang C et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 37, 1214-1216(2012).
[40] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 81, 026001(2018).
[41] Sudrie L, Franco M, Prade B et al. Study of damage in fused silica induced by ultra-short IR laser pulses[J]. Optics Communications, 191, 333-339(2001).
[42] Zhan X P, Xu H L, Li C H et al. Remote and rapid micromachining of broadband low-reflectivity black silicon surfaces by femtosecond laser filaments[J]. Optics Letters, 42, 510-513(2017).
[44] Lange H R, Chiron A, Ripoche J F et al. High-order harmonic generation and quasiphase matching in xenon using self-guided femtosecond pulses[J]. Physical Review Letters, 81, 1611-1613(1998).
[45] Chin S L, Aközbek N, Proulx A et al. Transverse ring formation of a focused femtosecond laser pulse propagating in air[J]. Optics Communications, 188, 181-186(2001).
[46] Méchain G, Couairon A, André Y B et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization[J]. Applied Physics B, 79, 379-382(2004).
[47] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).
[48] Liu W, Théberge F, Arévalo E et al. Experiment and simulations on the energy reservoir effect in femtosecond light filaments[J]. Optics Letters, 30, 2602-2604(2005).
[49] Xu S Q, Sun X D, Zeng B et al. Simple method of measuring laser peak intensity inside femtosecond laser filament in air[J]. Optics Express, 20, 299-307(2012).
[50] Liu W, Chin S, Kosareva O et al. Multiple refocusing of a femtosecond laser pulse in a dispersive liquid (methanol)[J]. Optics Communications, 225, 193-209(2003).
[51] Qi P F, Lin L, Su Q et al. In-situ visualization of multiple filament competition dynamic during nonlinear propagation of femtosecond laser[J]. Scientific Reports, 7, 10384(2017).
[52] Liu J S, Schroeder H, Chin S L et al. Nonlinear propagation of fs laser pulses in liquids and evolution of supercontinuum generation[J]. Optics Express, 13, 10248-10259(2005).
[53] Brodeur A, Chin S L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media[J]. Journal of the Optical Society of America B, 16, 637-650(1999).
[54] Liu W, Gravel J F, Théberge F et al. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air[J]. Applied Physics B, 80, 857-860(2005).
[55] Iwasaki A, Aközbek N, Ferland B et al. A LIDAR technique to measure the filament length generated by a high-peak power femtosecond laser pulse in air[J]. Applied Physics B, 76, 231-236(2003).
[56] Hosseini S A, Yu J, Luo Q et al. Multi-parameter characterization of the longitudinal plasma profile of a filament: a comparative study[J]. Applied Physics B, 79, 519-523(2004).
[58] Odhner J, Levis R J. Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air[J]. Optics Letters, 37, 1775-1777(2012).
[59] Liu Y, Wen Q, Xu S et al. Pulse characterization during femtosecond laser filamentation in air by two-photon fluorescence measurement[J]. Applied Physics B, 105, 825-831(2011).
[60] Sun Q, Jiang H B, Liu Y et al. Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica[J]. Optics Letters, 30, 320-322(2005).
[61] La Fontaine B, Vidal F, Jiang Z et al. Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air[J]. Physics of Plasmas, 6, 1615-1621(1999).
[62] Théberge F, Liu W W, Simard P T et al. Plasma density inside a femtosecond laser filament in air: strong dependence on external focusing[J]. Physical Review E, 74, 036406(2006).
[63] Yu J, Mondelain D, Kasparian J et al. Sonographic probing of laser filaments in air[J]. Applied Optics, 42, 7117-7120(2003).
[64] Bernhardt J, Liu W, Théberge F et al. Spectroscopic analysis of femtosecond laser plasma filament in air[J]. Optics Communications, 281, 1268-1274(2008).
[65] Wang T J, Ju J J, Wei Y X et al. Longitudinally resolved measurement of plasma density along femtosecond laser filament via terahertz spectroscopy[J]. Applied Physics Letters, 105, 051101(2014).
[66] Ripoche J F, Grillon G, Prade B et al. Determination of the time dependence of n2 in air[J]. Optics Communications, 135, 310-314(1997).
[67] Kosareva O G, Kandidov V P, Brodeur A et al. From filamentation in condensed media to filamentation in gases[J]. Journal of Nonlinear Optical Physics & Materials, 6, 485-494(1997).
[68] Talebpour A, Yang J, Chin S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti∶sapphire laser pulse[J]. Optics Communications, 163, 29-32(1999).
[69] Brabec T, Krausz F. Nonlinear optical pulse propagation in the single-cycle regime[J]. Physical Review Letters, 78, 3282-3285(1997).
[70] Kolesik M, Wright E M, Moloney J V. Dynamic nonlinear X waves for femtosecond pulse propagation in water[J]. Physical Review Letters, 92, 253901(2004).
[71] Kolesik M, Moloney J V, Mlejnek M. Unidirectional optical pulse propagation equation[J]. Physical Review Letters, 89, 283902(2002).
[72] Kolesik M, Moloney J V. Nonlinear optical pulse propagation simulation: from Maxwell's to unidirectional equations[J]. Physical Review E, 70, 036604(2004).
[73] Liu W W, Chin S L. Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation[J]. Physical Review A, 76, 013826(2007).
[74] Moll K D, Gaeta A L, Fibich G. Self-similar optical wave collapse: observation of the Townes profile[J]. Physical Review Letters, 90, 203902(2003).
[75] Aközbek N, Iwasaki A, Becker A et al. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses[J]. Physical Review Letters, 89, 143901(2002).
[76] Lange H R, Grillon G, Ripoche J F et al. Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?[J]. Optics Letters, 23, 120-122(1998).
[77] Liu W, Petit S, Becker A et al. Intensity clamping of a femtosecond laser pulse in condensed matter[J]. Optics Communications, 202, 189-197(2002).
[78] Daigle J F, Jaroń-Becker A, Hosseini S et al. Intensity clamping measurement of laser filaments in air at 400 and 800 nm[J]. Physical Review A, 82, 023405(2010).
[80] Talebpour A, Petit S, Chin S. Re-focusing during the propagation of a focused femtosecond Ti∶sapphire laser pulse in air[J]. Optics Communications, 171, 285-290(1999).
[81] Wu Z X, Jiang H B, Luo L et al. Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica[J]. Optics Letters, 27, 448-450(2002).
[82] Hosseini S A, Luo Q, Ferland B et al. Competition of multiple filaments during the propagation of intense femtosecond laser pulses[J]. Physical Review A, 70, 033802(2004).
[83] Liu W, Hosseini S A, Luo Q et al. Experimental observation and simulations of the self-action of white light laser pulse propagating in air[J]. New Journal of Physics, 6, 6(2004).
[84] Courvoisier F, Boutou V, Kasparian J et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 83, 213-215(2003).
[85] Skupin S, Bergé L, Peschel U et al. Interaction of femtosecond light filaments with obscurants in aerosols[J]. Physical Review Letters, 93, 023901(2004).
[86] Dubietis A, Kucinskas E, Tamosauskas G et al. Self-reconstruction of light filaments[J]. Optics Letters, 29, 2893-2895(2004).
[88] Boyd R W[M]. Nonlinear optics, 67-371(2003).
[89] Agrawal G P[M]. Nonlinear fiber optics, 20-78(1989).
[90] Liu W W. Ultrashort pulse filamentation in transparent optical media[D]. Quebec: Laval University, 24-27(2006).
[91] Brodeur A, Chin S L. Band-gap dependence of the ultrafast white-light continuum[J]. Physical Review Letters, 80, 4406-4409(1998).
[92] Xu S Q, Zhang Y Z, Liu W W et al. Experimental confirmation of high-stability of fluorescence in a femtosecond laser filament in air[J]. Optics Communications, 282, 4800-4804(2009).
[93] Béjot P, Kasparian J, Henin S et al. Higher-order Kerr terms allow ionization-free filamentation in gases[J]. Physical Review Letters, 104, 103903(2010).
[94] Kosareva O, Daigle J F, Panov N et al. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?[J]. Optics Letters, 36, 1035-1037(2011).
[96] Qi P F, Zhang L, Lin L et al. Critical power for self-focusing of optical beam in absorbing media[J]. Laser Physics, 28, 045407(2018).
[97] Vidal F, Johnston T W. Electromagnetic beam breakup: multiple filaments, single beam equilibria, and radiation[J]. Physical Review Letters, 77, 1282-1285(1996).
[98] Chin S L, Talebpour A, Yang J et al. Filamentation of femtosecond laser pulses in turbulent air[J]. Applied Physics B, 74, 67-76(2002).
[99] Chin S L, Petit S, Liu W et al. Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air[J]. Optics Communications, 210, 329-341(2002).
[100] Chin S L, Liu W W, Theberge F et al. Some fundamental concepts of femtosecond laser filamentation[M]. ∥Yamanouchi K, Chin S L, Agostini P, et al. Progress in ultrafast intense laser science III. Berlin, Heidelberg: Springer, 89, 243-264(2008).
[101] Carrasco S, Polyakov S, Kim H et al. Observation of multiple soliton generation mediated by amplification of asymmetries[J]. Physical Review E, 67, 046616(2003).
[102] Gao H, Sun X D, Zeng B et al. Cylindrical symmetry breaking leads to multiple filamentation generation when focusing femtosecond lasers with axicons in methanol[J]. Journal of Optics, 14, 065203(2012).
[103] Xi T T, Lu X, Zhang J. Interaction of light filaments generated by femtosecond laser pulses in air[J]. Physical Review Letters, 96, 025003(2006).
[104] Tzortzakis S, Bergé L, Couairon A et al. Breakup and fusion of self-guided femtosecond light pulses in air[J]. Physical Review Letters, 86, 5470-5473(2001).
[105] Cai H, Wu J, Lu P F et al. Attraction and repulsion of parallel femtosecond filaments in air[J]. Physical Review A, 80, 051802(2009).
[106] Mlejnek M, Kolesik M, Moloney J V et al. Optically turbulent femtosecond light guide in air[J]. Physical Review Letters, 83, 2938-2941(1999).
[107] Gao H, Chu W, Yu G L et al. Femtosecond laser filament array generated with step phase plate in air[J]. Optics Express, 21, 4612-4622(2013).
[108] Luo Q, Liu W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation[J]. Applied Physics B, 76, 337-340(2003).
[110] Yao J P, Chu W, Liu Z X et al. An anatomy of strong-field ionization-induced air lasing[J]. Applied Physics B, 124, 73(2018).
[111] Yao J P, Zeng B, Xu H L et al. High-brightness switchable multiwavelength remote laser in air[J]. Physical Review A, 84, 051802(2011).
[112] Luo Q, Xu H L, Hosseini S A et al. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy[J]. Applied Physics B, 82, 105-109(2006).
[113] Liu W, Théberge F, Daigle J F et al. An efficient control of ultrashort laser filament location in air for the purpose of remote sensing[J]. Applied Physics B, 85, 55-58(2006).
[114] Théberge F, Luo Q, Liu W et al. Long-range third-harmonic generation in air using ultrashort intense laser pulses[J]. Applied Physics Letters, 87, 081108(2005).
[117] Liu W, Kosareva O, Golubtsov I S et al. Femtosecond laser pulse filamentation versus optical breakdown in H2O[J]. Applied Physics B, 76, 215-229(2003).
[118] Nguyen N T, Saliminia A, Liu W et al. Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses[J]. Optics Letters, 28, 1591-1593(2003).
[119] Qi P F, Su Q, Lin L et al. Bubble dynamics driven by a few successive femtosecond laser pulses in methanol under 1 kHz[J]. Journal of the Optical Society of America B, 35, 2727-2733(2018).
[120] Bergé L, Rasmussen J J, Kuznetsov E A et al. Self-focusing of chirped optical pulses in media with normal dispersion[J]. Journal of the Optical Society of America B, 13, 1879-1891(1996).
[121] Nuter R, Skupin S, Bergé L. Chirp-induced dynamics of femtosecond filaments in air[J]. Optics Letters, 30, 917-919(2005).
[122] Kartazaev V, Alfano R R. Supercontinuum generated in calcite with chirped femtosecond pulses[J]. Optics Letters, 32, 3293-3295(2007).
[123] Shumakova V, Alisauskas S, Malevich P et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR[J]. Optics Letters, 44, 2173-2176(2019).
[124] Wang W M, Sheng Z M, Wu H C et al. Strong terahertz pulse generation by chirped laser pulses in tenuous gases[J]. Optics Express, 16, 16999-17006(2008).
[125] Zhang Z, Panov N, Andreeva V et al. Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air[J]. Applied Physics Letters, 113, 241103(2018).
[126] Nguyen A. González de Alaiza Martínez P, Thiele I, et al. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses[J]. New Journal of Physics, 20, 033026(2018).
[127] Roskos H G, Thomson M D, Kreß M et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: from fundamentals to applications[J]. Laser & Photonics Review, 1, 349-368(2007).
[128] Andreeva V A, Kosareva O G, Panov N A et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 116, 063902(2016).
[129] Zeng B, Chu W, Gao H et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses[J]. Physical Review A, 84, 063819(2011).
[130] Zeng B, Wang T J, Hosseini S et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 29, 3226-3230(2012).
[131] Froula D H, Turnbull D, Davies A S et al. Spatiotemporal control of laser intensity[J]. Nature Photonics, 12, 262-265(2018).
[132] Luo Q, Hosseini S A, Liu W et al. Effect of beam diameter on the propagation of intense femtosecond laser pulses[J]. Applied Physics B, 80, 35-38(2005).
[133] Liu W, Luo Q, Théberge F et al. The influence of divergence on the filament length during the propagation of intense ultra-short laser pulses[J]. Applied Physics B, 82, 373-376(2006).
[134] Gao H, Liu W W, Chin S L. Post-filamentation multiple light channel formation in air[J]. Laser Physics, 24, 055301(2014).
[135] Fu Y X, Xiong H, Xu H et al. Generation of extended filaments of femtosecond pulses in air by use of a single-step phase plate[J]. Optics Letters, 34, 3752-3754(2009).
[136] Walter D, Bürsing H, Ebert R. Emission of spiral patterns from filaments in the infrared[J]. Optics Express, 18, 24258-24263(2010).
[138] Hong Z F, Zhang Q B, Ali Rezvani S et al. Extending plasma channel of filamentation with a multi-focal-length beam[J]. Optics Express, 24, 4029-4041(2016).
[139] Sun X D, Zeng T, Gao H et al. Power dependent filamentation of a femtosecond laser pulse in air by focusing with an axicon[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094004(2015).
[141] Davis K M, Miura K, Sugimoto N et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 21, 1729-1731(1996).
[142] Kosareva O G, Nguyen T, Panov N A et al. Array of femtosecond plasma channels in fused silica[J]. Optics Communications, 267, 511-523(2006).
[143] Châteauneuf M, Payeur S, Dubois J et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 92, 091104(2008).
[144] Alshershby M, Hao Z Q, Lin J Q. Guiding microwave radiation using laser-induced filaments: the hollow conducting waveguide concept[J]. Journal of Physics D: Applied Physics, 45, 265401(2012).
[145] Zhao J Y, Guo L J, Chu W et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate[J]. Optics Letters, 40, 3838-3841(2015).
[146] Gao H, Zhao J Y, Liu W W. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 21, 598-607(2013).
[147] Hao Z, Zhang J, Li Y et al. Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses[J]. Applied Physics B, 80, 627-630(2005).
[148] Chu W, Zeng B, Li Z T et al. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system[J]. Applied Physics B, 123, 173(2017).
[149] Yang X, Wu J, Peng Y et al. Plasma waveguide array induced by filament interaction[J]. Optics Letters, 34, 3806-3808(2009).
[150] Liu J, Li W X, Pan H F et al. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air[J]. Applied Physics Letters, 99, 151105(2011).
[151] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).
[152] Fuji T K, Horio T, Suzuki T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas[J]. Optics Letters, 32, 2481-2483(2007).
[153] Zeng T, He J P, Kobayashi T et al. Mechanism study of 2-D laser array generation in a YAG crystal plate[J]. Optics Express, 23, 19092-19097(2015).
[154] Yang J, Zeng T, Lin L et al. Beam wandering of femtosecond laser filament in air[J]. Optics Express, 23, 25628-25634(2015).
[155] Panov N A, Shipilo D E, Saletsky A M et al. Nonlinear transparency window for ultraintense femtosecond laser pulses in the atmosphere[J]. Physical Review A, 100, 023832(2019).
[156] Xu H L, Lötstedt E, Iwasaki A et al. Sub-10-fs population inversion in N 2+ in air lasing through multiple state coupling[J]. Nature Communications, 6, 8347-8347(2015).
[157] Malevich P N, Maurer R, Kartashov D et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament[J]. Optics Letters, 40, 2469-2472(2015).
[158] Peñano J, Sprangle P, Hafizi B et al. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen[J]. Journal of Applied Physics, 111, 033105(2012).
[160] Matthews M, Morales F, Patas A et al. Amplification of intense light fields by nearly free electrons[J]. Nature Physics, 14, 695-700(2018).
[161] Li H L, Hou M Y, Zang H W et al. Significant enhancement of N 2+ lasing by polarization-modulated ultrashort laser pulses[J]. Physical Review Letters, 122, 013202(2019).
[162] Su Q, Sun L, Chu C Y et al. Effect of molecular orbital angular momentum on the spatial distribution of fluorescence during femtosecond laser filamentation in air[J]. The Journal of Physical Chemistry Letters, 11, 730-734(2020).
[163] Yuan S, Wang T J, Teranishi Y et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 102, 224102(2013).
[164] Chu W, Li H L, Ni J L et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis[J]. Applied Physics Letters, 104, 091106(2014).
[165] Hosseini S, Azarm A, Daigle J F et al. Filament-induced amplified spontaneous emission in air-hydrocarbons gas mixture[J]. Optics Communications, 316, 61-66(2014).
[166] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).
[168] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 31, 1540-1542(2006).
[169] Liu W, Xu H L, Méjean G et al. Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 76-81(2007).
[170] Hartig K C, Ghebregziabher I, Jovanovic I. Standoff detection of uranium and its isotopes by femtosecond filament laser ablation molecular isotopic spectrometry[J]. Scientific Reports, 7, 43852-43852(2017).
[171] Daigle J F, Méjean G, Liu W et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy[J]. Applied Physics B, 87, 749-754(2007).
[172] Oh T I, Yoo Y J, You Y S et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling[J]. Applied Physics Letters, 105, 041103(2014).
[173] Zhang H J, Das S, Zhang J et al. Efficient and broadband polarization rotator using horizontal slot waveguide for silicon photonics[J]. Applied Physics Letters, 101, 021105(2012).
[174] Liu J L, Dai J M, Chin S L et al. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases[J]. Nature Photonics, 4, 627-631(2010).
[176] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).
[178] Zhang Z L, Chen Y P, Cui S et al. Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments[J]. Nature Photonics, 12, 554-559(2018).
[179] Chin S L. Femtosecond laser filamentation[M]. New York: Springer, 55, 93-118(2009).
Get Citation
Copy Citation Text
Weiwei Liu, Jiayun Xue, Qiang Su, See Leang Chin. Research Progress on Ultrafast Laser Filamentation[J]. Chinese Journal of Lasers, 2020, 47(5): 0500003
Category: reviews
Received: Feb. 11, 2020
Accepted: Mar. 31, 2020
Published Online: May. 12, 2020
The Author Email: Liu Weiwei (liuweiwei@nankai.edu.cn)