Remote Sensing Technology and Application, Volume. 39, Issue 1, 149(2024)

The Hyperspectral Inversion Method of Main Ionic Compounds Content in Groundwater based on BP Neural Network

Qing GUO1,2、*, Lifu ZHANG1, Wenchao Qi1, and Linshan ZHANG1,2
Author Affiliations
  • 1Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    Figures & Tables(7)
    Average spectra
    BPNN inversion model fit
    • Table 1. Modeling results of KCl, CaCl2 andNaCl based on SPA feature spectrum selection

      View table
      View in Article

      Table 1. Modeling results of KCl, CaCl2 andNaCl based on SPA feature spectrum selection

      光谱

      指标

      预处理个数谱段位置训练集测试集
      R2RMSERPDR2RMSERPD
      KClMD2238, 10.733 52 027.551.670 60.867 91 727.432.125 1
      MD-SG15102、21、19、20、15、18、17、7、34、24、3、5、26、9、80.940 91 019.183.996 30.963 0864.585.065 9
      MD-SG-LR13102、21、20、19、15、17、7、24、18、8、3、9、260.946 71 000.694.222 60.958 0847.434.818 5
      MD-SG-CR7219、40、29、20、16、6、300.796 71 942.951.983 40.805 41 853.381.889 6
      MD-SG-NR15102、70、19、21、34、17、20、18、3、26、5、7、22、14、240.940 41 004.173.980 90.966 1840.445.225 8
      CaCl2MD2291、50.551 32 236.121.110 50.622 72 660.371.028 1
      MD-SG2268、340.581 22 283.671.180 10.667 32 369.601.200 1
      MD-SG-LR2290、2160.560 52 518.311.131 30.792 41 620.801.582 8
      MD-SG-CR7117、54、216、30、43、48、2820.572 82 501.151.159 80.757 21 714.941.373 4
      MD-SG-NR2272、340.646 72 094.841.355 20.783 91 916.601.688 7
      NaClMD2187、100.900 6914.683.025 90.962 97 563.194.764 9
      MD-SG5289、297、106、56、200.941 0689.033.999 30.979 0584.326.481 8
      MD-SG-LR4289、297、107、140.964 5649.655.253 10.962 4545.685.085 6
      MD-SG-CR15197、60、66、54、15、16、74、32、35、27、21、294、39、25、490.851 61 393.082.399 60.596 01 307.221.642 4
      MD-SG-NR8250、9、17、18、2、13、10、40.969 0565.165.599 20.981 1470.167.172 5
    • Table 2. Modeling results of KCl, CaCl2 andNaCl based on PCA characteristic spectral bands

      View table
      View in Article

      Table 2. Modeling results of KCl, CaCl2 andNaCl based on PCA characteristic spectral bands

      光谱指标预处理训练集测试集
      R2RMSERPDR2RMSERPD
      KClMD0.838 41 672.352.281 80.879 31 562.762.500 5
      MD-SG0.892 51 302.892.886 50.952 11 030.154.093 8
      MD-SG-LR0.896 71 268.462.951 30.954 61 008.304.280 0
      MD-SG-CR0.969 7736.835.667 90.973 5712.976.002 3
      MD-SG-NR0.887 51 502.892.646 10.853 71 338.143.966 7
      CaCl2MD0.577 62 420.831.171 50.720 91 979.701.448 8
      MD-SG0.595 72 350.491.216 00.730 21 979.121.437 5
      MD-SG-LR0.604 92 372.801.239 60.721 21 912.861.462 5
      MD-SG-CR0.606 62 410.591.2440.739 51 744.421.452 8
      MD-SG-NR0.688 72 136.651.490 00.670 61 993.591.515 1
      NaClMD0.927 2895.993.587 70.962 1618.694.771
      MD-SG0.929 1899.473.625 40.957 3622.094.606 4
      MD-SG-LR0.938 6842.983.924 40.961 9569.534.931 4
      MD-SG-CR0.860 61 325.832.517 40.786 31 020.932.028 7
      MD-SG-NR0.967 6627.355.482 30.964 3509.205.264 4
    • Table 3. Modeling results ofKCl, CaCl2 andNaCl based on BPNN full-band

      View table
      View in Article

      Table 3. Modeling results ofKCl, CaCl2 andNaCl based on BPNN full-band

      光谱指标预处理训练集测试集
      R2RMSERPDR2RMSERPD
      全波段KClMD0.982 3521.377.378 90.970 9811.375.690 4
      MD-SG0.996 4248.7716.706 60.998 8156.8929.019 6
      MD-SG-LR0.995 9279.0015.589 20.997 4210.3119.738 0
      MD-SG-CR0.996 0271.0415.491 50.990 1417.469.769 8
      MD-SG-NR0.996 4247.2316.691 00.998 5174.4326.337 0
      CaCl2MD0.828 01 384.352.387 50.658 72 530.331.380 5
      MD-SG0.619 52 176.941.548 00.692 92 276.431.574 0
      MD-SG-LR0.750 01 899.211.922 70.662 82 053.171.528 7
      MD-SG-CR0.680 42 163.121.5750.748 61 744.911.615 9
      MD-SG-NR0.984 2443.657.942 10.919 9983.253.522 4
      NaClMD0.995203.8114.135 60.991 5362.610.761 1
      MD-SG0.996 4168.3316.712 70.992 9341.1311.765 5
      MD-SG-LR0.993 7273.113.116 60.984 9345.468.427 5
      MD-SG-CR0.992 6310.4511.670 60.944 8483.264.253 1
      MD-SG-NR0.983 8408.047.601 40.998 2144.3423.385 3
    • Table 4. Modeling results of KCl, CaCl2 and NaCl based on PCA-BPNN

      View table
      View in Article

      Table 4. Modeling results of KCl, CaCl2 and NaCl based on PCA-BPNN

      光谱指标预处理训练集测试集
      R2RMSERPDR2RMSERPD
      PCAKClMD0.986 7479.048.663 00.990 1447.999.986 9
      MD-SG0.998 1181.9822.775 70.988 4488.079.380 0
      MD-SG-LR0.999 1130.9532.665 60.999 2120.8635.748 9
      MD-SG-CR0.997 0232.1318.246 70.997 2232.2618.912 9
      MD-SG-NR0.996 7237.7717.407 30.997 2240.0719.070 9
      CaCl2MD0.696 62 051.791.518 30.797 11 687.661.797 8
      MD-SG0.697 22 034.131.491 30.750 21 904.111.460 9
      MD-SG-LR0.738 81 929.351.735 80.784 71 681.031.838 6
      MD-SG-CR0.758 61 888.571.666 90.781 91 596.461.560 0
      MD-SG-NR0.895 61 237.503.033 50.951 1911.954.462 5
      NaClMD0.996 5196.7116.832 90.996 9177.3718.023 7
      MD-SG0.996 6187.9617.219 00.996 8189.1917.752 0
      MD-SG-LR0.997 6173.9620.485 50.992 8199.8111.739 9
      MD-SG-CR0.995 2249.5214.568 00.973 5335.076.171 9
      MD-SG-NR0.998 8114.4228.658 40.998 8112.9228.973 5
    • Table 5. Modeling results of KCl, CaCl2 and NaCl based on PLSR full-band

      View table
      View in Article

      Table 5. Modeling results of KCl, CaCl2 and NaCl based on PLSR full-band

      预处理训练集测试集
      R2RMSERPDR2RMSERPD
      KClMD0.948 1892.824.283 60.944 41 169.833.691 1
      MD-SG0.992 6429.999.6440.992 6391.9211.641 5
      MD-SG-LR0.990 6421.1710.262 30.991 7385.5110.946 3
      MD-SG-CR0.992 2380.0611.315 10.985 5510.548.161 5
      MD-SG-NR0.989 3425.739.630 30.993 9367.2012.638 9
      CaCl2MD0.832 91 364.642.236 50.613 22 699.461.235 1
      MD-SG0.592 22 253.461.207 20.707 52 312.621.238 8
      MD-SG-LR0.5672 499.601.146 30.833 21 651.021.521 5
      MD-SG-CR0.581 22 476.291.180 10.819 41 727.211.421 3
      MD-SG-NR0.973 9569.486.117 80.958 8841.664.783 2
      NaClMD0.987 9318.019.067 80.971 9660.055.911 1
      MD-SG0.962 8541.825.094 20.984 2511.347.752 2
      MD-SG-LR0.979 9488.106.988 30.969 2495.195.678 6
      MD-SG-CR0.931 3948.053.687 10.754 91 046.031.939 6
      MD-SG-NR0.965 8593.375.324 20.979 2494.976.838 2
    Tools

    Get Citation

    Copy Citation Text

    Qing GUO, Lifu ZHANG, Wenchao Qi, Linshan ZHANG. The Hyperspectral Inversion Method of Main Ionic Compounds Content in Groundwater based on BP Neural Network[J]. Remote Sensing Technology and Application, 2024, 39(1): 149

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 15, 2022

    Accepted: --

    Published Online: Jul. 22, 2024

    The Author Email: GUO Qing (1079695784@qq.com)

    DOI:10.11873/j.issn.1004-0323.2024.1.0149

    Topics