Journal of Synthetic Crystals, Volume. 50, Issue 4, 708(2021)
Lithium Niobate Crystals in the Information Age: Progress and Prospect
[1] [1] WEMPLE S H, DIDOMENICO M Jr, CAMLIBEL I. Relationship between linear and quadratic electro-optic coefficients in LiNbO3, LiTaO3, and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization[J]. Applied Physics Letters, 1968, 12(6): 209-211.
[4] [4] ITO H, TAKYU C, INABA H. Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes[J]. Electronics Letters, 1991, 27(14): 1221.
[5] [5] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603.
[6] [6] CHEN F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 2012, 6(5): 622-640.
[7] [7] ZHANG B, WANG L, CHEN F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser & Photonics Reviews, 2020, 14(8): 1900407.
[8] [8] STANDIFER E M, JUNDT D H, NORWOOD R G, et al. Chemically reduced lithium niobate single crystals: processing, properties and improvements in SAW device fabrication and performance[C]//Proceedings of the 1998 IEEE International Frequency Control Symposium (Cat. No.98CH36165). May 29-29, 1998, Pasadena, CA, USA. IEEE, 1998: 470-472.
[9] [9] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918.
[10] [10] WANG T X, CHEN P C, XU C, et al. Periodically poled LiNbO3 crystals from 1D and 2D to 3D[J]. Science China (Technological Sciences), 2020, 63(7): 1110-1126.
[11] [11] CURTIS B J, BRUNNER H R. The growth of thin films of lithium niobate by chemical vapour de position[J]. Materials Research Bulletin, 1975, 10(6): 515-520.
[12] [12] BETTS R A, PITT C W. Growth of thin-film lithium niobate by molecular beam epitaxy[J]. Electronics Letters, 1985, 21(21): 960.
[13] [13] RABSON T A, BAUMANN R C, ROST T A. Thin film lithium niobate on silicon[J]. Ferroelectrics, 1990, 112(1): 265-271.
[14] [14] LEVY M, OSGOOD R M Jr, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295.
[15] [15] PASTUREAUD T, SOLAL M, BIASSE B, et al. High-frequency surface acoustic waves excited on thin-oriented LiNbO3 single-crystal layers transferred onto silicon[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(4): 870-876.
[16] [16] HU H, RICKEN R, SOHLER W. Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast[EB/OL].
[17] [17] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
[18] [18] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537.
[19] [19] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.
[20] [20] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.
[22] [22] SUN D H, ZHANG Y W, WANG D Z, et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 2020, 9: 197.
[23] [23] STPHANE ELISABETH, YOUSSEF EL GMILI. Murata incredible high performance (IHP) SAW filter[EB/OL]. [2019-10-14]. https://www.sohu.com/a/346837700_406495.
[24] [24] CHEN G, ZHAO X, WANG X, et al. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer[J]. Scientific Reports, 2015, 5: 9510.
[25] [25] MOHD NOR N I, SHAH K, SINGH J, et al. Film bulk acoustic wave resonator filter for Ku-band applications[J]. Applied Mechanics and Materials, 2013, 321/322/323/324: 1614-1619.
[26] [26] HARA M, UEDA M, SATOH Y. A thin-film bulk acoustic resonator and filter with optimal edge shapes for mass production[J]. Ultrasonics, 2013, 53(1): 90-96.
[27] [27] PLESSKY V, YANDRAPALLI S, TURNER P J, et al. 5 GHz laterally-excited bulk-wave resonators (XBARs) based on thin platelets of lithium niobate[J]. Electronics Letters, 2019, 55(2): 98-100.
[28] [28] JIN H, LIU F M, XU P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 2014, 113(10): 103601.
[29] [29] LEAH B. Now entering lithium niobate valley [EB/OL]. [2017-12-21]https://www.seas.harvard.edu/new/2017/12/now-entering-lithium-niobate-valley.
[30] [30] WANG S, JI C, DAI P, et al. The growth and characterization of six inch lithium niobate crystals with high homogeneity[J]. CrystEngComm, 2020, 22(4): 794-801.
[31] [31] SOHLER W. Erbium-doped lithium niobate waveguide lasers[J]. IEICE Transactions on Electronics, 2005, E88-C(5): 990-997.
[32] [32] ZHOU J X, LIANG Y T, LIU Z X, et al. On-chip integrated waveguide amplifiers on erbium-doped thin film lithium niobate on insulator[EB/OL]. 2021.
[33] [33] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 1-5.
[34] [34] ZHU S N, ZHU Y Y, ZHANG Z Y, et al. LiTaO3 crystal periodically poled by applying an external pulsed field[J]. Journal of Applied Physics, 1995, 77(10): 5481-5483.
[35] [35] LIANG L Y, WANG F L, SANG Y H, et al. Facile approach for the periodic poling of MgO-doped lithium niobate with liquid electrodes[J]. CrystEngComm, 2019, 21(6): 941-947.
[37] [37] Zheng M, Yao Q, Wang B, et al. Integrated multichannel lithium niobate waveguides for quantum frequency conversion[J]. Phys Rev Applied, 2020, 14(3): 034035.
[38] [38] MACKWITZ P. Periodic domain inversion in x-cut single-crystal lithium niobate thin film [J]. Appl Phys Lett, 2016, 108: 152902.
[39] [39] WANG C, LANGROCK C, MARANDI A, et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438-1441.
[40] [40] RAO A, ABDELSALAM K, SJAARDEMA T, et al. Actively-monitored periodic-poling in thin-film lithium niobate photonic waveguides with ultrahigh nonlinear conversion efficiency of 4 600% W-1·cm-2[J]. Optics Express, 2019, 27(18): 25920-25930.
[41] [41] STANICKI B J, YOUNESI M, LCHNER F J F, et al. Surface domain engineering in lithium niobate[J]. OSA Continuum, 2020, 3(2): 345-358.
[42] [42] KIM B J, KIM C S, KIM D J, et al. Fabrication of thick periodically-poled lithium niobate crystals by standard electric field poling and direct bonding[J]. Journal of the Optical Society of Korea, 2010, 14(4): 420-423.
[43] [43] SUN D H, SONG W, LI L L, et al. Origin of ferroelectric modification: the thermal behavior of dopant ions[J]. Crystal Growth & Design, 2018, 18(9): 4860-4863.
[44] [44] ISHIZUKI H, TAIRA T. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO∶LiNbO3 device with a 5 mm×5 mm aperture[J]. Optics Letters, 2005, 30(21): 2918-2920.
[45] [45] ISHIZUKI H, TAIRA T. Half-joule output optical-parametric oscillation SEP by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3[J]. Optics Express, 2012, 20(18): 20002-20010.
[46] [46] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600.
[47] [47] WEI D, WANG C, XU X, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals[J]. Nature Communications, 2019, 10(1): 4193.
[48] [48] WANG D Z, SUN D H, KANG X L, et al. Periodically poled self-frequency-doubling green laser fabricated from Nd∶Mg∶LiNbO3 single crystal[J]. Optics Express, 2015, 23(14): 17727-17738.
[49] [49] LIU H Y, YU Y J, SUN D H, et al. 1514 nm eye-safe passively Q-switched self-optical parametric oscillator based on Nd3+-doped MgO∶PPLN[J]. Chinese Optics Letters, 2019, 17(11): 111404.
Get Citation
Copy Citation Text
LIU Hong, SANG Yuanhua, SUN Dehui, WANG Dongzhou, WANG Jiyang. Lithium Niobate Crystals in the Information Age: Progress and Prospect[J]. Journal of Synthetic Crystals, 2021, 50(4): 708
Category:
Received: Mar. 15, 2021
Accepted: --
Published Online: Jul. 13, 2021
The Author Email:
CSTR:32186.14.