Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316015(2023)

Multifunctional Optical Fibers for Optogenetics

Yankun Qi, Zhihao Zhang, Lü Shichao, and Shifeng Zhou*
Author Affiliations
  • State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
  • show less
    References(42)

    [1] Fork R L. Laser stimulation of nerve cells in Aplysia[J]. Science, 171, 907-908(1971).

    [2] Crick F H C. Thinking about the brain[J]. Scientific American, 241, 219-232(1979).

    [3] Nagel G, Ollig D, Fuhrmann M et al. Channelrhodopsin-1: a light-gated proton channel in green algae[J]. Science, 296, 2395-2398(2002).

    [4] Nagel G, Szellas T, Huhn W et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 13940-13945(2003).

    [5] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [6] Xu X M, Ordaz J, Wu W. Optogenetics and its application in neural degeneration and regeneration[J]. Neural Regeneration Research, 12, 1197(2017).

    [7] Yizhar O, Fenno L E, Davidson T J et al. Optogenetics in neural systems[J]. Neuron, 71, 9-34(2011).

    [8] Nihongaki Y, Kawano F, Nakajima T et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nature Biotechnology, 33, 755-760(2015).

    [9] Xu Y X, Hyun Y M, Lim K et al. Optogenetic control of chemokine receptor signal and T-cell migration[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 6371-6376(2014).

    [10] Hassabis D, Kumaran D, Summerfield C et al. Neuroscience-inspired artificial intelligence[J]. Neuron, 95, 245-258(2017).

    [11] Sinnen B L, Bowen A B, Forte J S et al. Optogenetic control of synaptic composition and function[J]. Neuron, 93, 646-660(2017).

    [12] Liu J, Fu T M, Cheng Z G et al. Syringe-injectable electronics[J]. Nature Nanotechnology, 10, 629-636(2015).

    [13] Rios G, Lubenov E V, Chi D et al. Nanofabricated neural probes for dense 3-D recordings of brain activity[J]. Nano Letters, 16, 6857-6862(2016).

    [14] Fu T M, Duan X J, Jiang Z et al. Sub-10-nm intracellular bioelectronic probes from nanowire-nanotube heterostructures[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 1259-1264(2014).

    [15] Tamaki S, Kuki T, Matsunaga T et al. Flexible tube-shaped neural probe for recording and optical stimulation of neurons at arbitrary depths[J]. Sensors and Material, 27, 507-523(2015).

    [16] Liu Q, Gan L H, Ni J et al. Dcf1 improves behavior deficit in drosophila and mice caused by optogenetic suppression[J]. Journal of Cellular Biochemistry, 118, 4210-4215(2017).

    [17] Miesenböck G. Optogenetic control of cells and circuits[J]. Annual Review of Cell and Developmental Biology, 27, 731-758(2011).

    [19] LeChasseur Y, Dufour S, Lavertu G et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo[J]. Nature Methods, 8, 319-325(2011).

    [20] Stark E, Koos T, Buzsáki G. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals[J]. Journal of Neurophysiology, 108, 349-363(2012).

    [21] Wu F, Stark E, Ku P C et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 88, 1136-1148(2015).

    [22] Li L Z, Lu L H, Ren Y Q et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe[J]. Nature Communications, 13, 839(2022).

    [23] Zorzos A N, Scholvin J, Boyden E S et al. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits[J]. Optics Letters, 37, 4841-4843(2012).

    [24] Schwaerzle M, Paul O, Ruther P. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications[J]. Journal of Micromechanics and Microengineering, 27, 065004(2017).

    [25] He F, Lycke R, Ganji M et al. Ultraflexible neural electrodes for long-lasting intracortical recording[J]. iScience, 23, 101387(2020).

    [26] Steinmetz N A, Aydin C, Lebedeva A et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings[J]. Science, 372, abf4558(2021).

    [27] Canales A, Jia X T, Froriep U P et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nature Biotechnology, 33, 277-284(2015).

    [28] Kang H, Hong W, An Y J et al. Thermoplasmonic optical fiber for localized neural stimulation[J]. ACS Nano, 14, 11406-11419(2020).

    [29] Tabet A, Antonini M J, Sahasrabudhe A et al. Modular integration of hydrogel neural interfaces[J]. ACS Central Science, 7, 1516-1523(2021).

    [30] Vasudevan S, Kajtez J, Bunea A I et al. Leaky optoelectrical fiber for optogenetic stimulation and electrochemical detection of dopamine exocytosis from human dopaminergic neurons[J]. Advanced Science, 6, 1902011(2019).

    [31] Chu Y S, Zhang J Z, Peng G D. Research progress of additive manufacturing in the preparation of special Shi Ying optical fiber[J]. Laser & Optoelectronics Progress, 59, 1516003(2022).

    [32] Temelkuran B, Hart S D, Benoit G et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission[J]. Nature, 420, 650-653(2002).

    [33] Lin T C, Zhao J Z, Cao C Z et al. Fabrication of metal-polymer nanocomposites by In-fiber instability[J]. Journal of Micro and Nano-Manufacturing, 4, 041008(2016).

    [34] Park S, Yuk H, Zhao R K et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity[J]. Nature Communications, 12, 3435(2021).

    [35] Du M H, Huang L, Zheng J J et al. Flexible fiber probe for efficient neural stimulation and detection[J]. Advanced Science, 7, 2001410(2020).

    [36] Jing S, Patel D C, Kim J et al. Spatially expandable fiber based probes as a multifunctional deep brain interface[J]. Nature Communications, 11, 6115(2020).

    [37] Park S, Guo Y Y, Jia X T et al. One-step optogenetics with multifunctional flexible polymer fibers[J]. Nature Neuroscience, 20, 612-619(2017).

    [39] Cai X, Li L Z, Liu W H et al. A dual-channel optogenetic stimulator selectively modulates distinct defensive behaviors[J]. iScience, 25, 103681(2022).

    [40] Liu Z, Yang L Z, Wang J F et al. Study on hemoglobin sensing by graphene oxide functionalized tapered optical fiber[J]. Laser & Optoelectronics Progress, 60, 0517001(2023).

    [41] Gutruf P, Krishnamurthi V, Vázquez-Guardado A et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research[J]. Nature Electronics, 1, 652-660(2018).

    [43] Chiong J A, Tran H, Lin Y J et al. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics[J]. Advanced Science, 8, 2101233(2021).

    Tools

    Get Citation

    Copy Citation Text

    Yankun Qi, Zhihao Zhang, Lü Shichao, Shifeng Zhou. Multifunctional Optical Fibers for Optogenetics[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316015

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Mar. 20, 2023

    Accepted: May. 8, 2023

    Published Online: Jul. 14, 2023

    The Author Email: Shifeng Zhou (zhoushifeng@scut.edu.cn)

    DOI:10.3788/LOP230987

    Topics