Optics and Precision Engineering, Volume. 30, Issue 11, 1310(2022)
Mechanism analysis and verification of double-layer micro-nano structure to enhance electromagnetic shielding
[1] SCHNEIDER J, ROHNER P, THUREJA D et al. Electrohydrodynamic NanoDrip printing of high aspect ratio metal grid transparent electrodes[J]. Advanced Functional Materials, 26, 833-840(2016).
[2] PARK J H, LEE D Y, KIM Y H et al. Flexible and transparent metallic grid electrodes prepared by evaporative assembly[J]. ACS Applied Materials & Interfaces, 6, 12380-12387(2014).
[3] KHAN A, LEE S, JANG T et al. High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process[J]. Small, 12, 3021-3030(2016).
[4] ABBASI S A, CHAI Z M, BUSNAINA A. Scalable printing of high-resolution flexible transparent grid electrodes using directed assembly of silver nanoparticles[J]. Advanced Materials Interfaces, 6, 1900898(2019).
[5] WANG W Q, BAI B F, ZHOU Q et al. Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction[J]. Optical Materials Express, 8, 3485-3493(2018).
[6] LIU Y H, XU J L, SHEN S et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications[J]. Journal of Materials Chemistry A, 5, 9032-9041(2017).
[7] JIN S W, LEE Y H, YEOM K M et al. Highly durable and flexible transparent electrode for flexible optoelectronic applications[J]. ACS Applied Materials & Interfaces, 10, 30706-30715(2018).
[8] SMITH H A, REBBERT M, STERNBERG O. Designer infrared filters using stacked metal lattices[J]. Applied Physics Letters, 82, 3605-3607(2003).
[9] LU Z G, WANG H Y, TAN J B et al. Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh[J]. Applied Physics Letters, 105, 241904(2014).
[10] LU Z G, LIU Y S, WANG H Y et al. Verification and improvement of equivalent refractive index models for evaluating the shielding effectiveness of high-transmittance double-layer metallic meshes[J]. Applied Optics, 55, 5372-5378(2016).
[11] WANG H Y, LU Z G, LIU Y S et al. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding[J]. Optics Letters, 42, 1620-1623(2017).
[12] LIU Y M, HAN Y, CAO J R et al. Wireless communication bandpass optical window with double-layer hexagon aperture FSS array[C], 9446, 223-228(2015).
[13] LU Z G, TAN J B. Analysis of transmitting characteristics of high-transparency double-layer metallic meshes with submillimeter period using an analytical model[J]. Applied Optics, 47, 5519-5526(2008).
[14] KAIPA C S R, YAKOVLEV A B, MEDINA F et al. Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes[J]. Optics Express, 18, 13309-13320(2010).
[15] VOGEL P, GENZEL L. Transmission and reflection of metallic mesh in the far infrared[J]. Infrared Physics, 4, 257-262(1964).
[16] ULRICH R. Far-infrared properties of metallic mesh and its complementary structure[J]. Infrared Physics, 7, 37-55(1967).
[17] DURSCHLAG M S, DETEMPLE T A. Far-IR optical properties of freestanding and dielectrically backed metal meshes[J]. Applied Optics, 20, 1245-1253(1981).
[18] WHITBOURN L B, COMPTON R C. Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary[J]. Applied Optics, 24, 217(1985).
[19] KOHIN M, WEIN S J, TRAYLOR J D et al. Analysis and design of transparent conductive coatings and filters[J]. Optical Engineering, 32, 911-925(1993).
Get Citation
Copy Citation Text
Dunwei LIAO, Yuejun ZHENG, Hao CUI, Tie CUN, Yunqi FU. Mechanism analysis and verification of double-layer micro-nano structure to enhance electromagnetic shielding[J]. Optics and Precision Engineering, 2022, 30(11): 1310
Category: Micro/Nano Technology and Fine Mechanics
Received: Mar. 1, 2022
Accepted: --
Published Online: Jul. 4, 2022
The Author Email: Yuejun ZHENG (zhengyuejun18@nudt.edu.cn)