Acta Optica Sinica, Volume. 34, Issue 8, 801006(2014)
Research of Spatial Heterodyne Spectroscopy for Atmospheric CO2 Remote Sensing with High Precision
[1] [1] D Crisp, H Bsch, L Brown, et al.. OCO (Orbiting Carbon Observatory)-2 level 2 full physics retrieval algorithm theoretical basis [J/OL]. Internet: http://disc. Sci. Gsfc. Nasa. gov/acdisc/documentation/OCO-2_L2_FP_ATBD_v1_rev4_Nov10. PDF, 2010.
[2] [2] S Hiroshi, A Kuze, M Nakajima, et al.. Airborne SWIR FTS for GOSAT validation and calibration [C]: SPIE, 2008, 7106: 71060M.
[3] [3] J M Harlander, F L Roesler, J G Cardon, et al.. Shimmer: a spatial heterodyne spectrometer for remote sensing of earth′ middle atmosphere [J]. Appl Opt, 2002, 41(7): 1343-1352.
[5] [5] Shi Hailiang, Fang Yonghua, Wu Jun, et al.. Study on spectral calibration of a novel interferometric spectrometer with supper-resolution capability [J]. Acta Optica Sinica, 2012, 32(5): 0528002.
[6] [6] Ye Song, Xiong Wei, Wang Xinqiang, et al.. Correction of spatial heterodyne interferogram based on frequency domain analysis [J]. Acta Optica Sinica, 2013, 33(5): 0530001.
[7] [7] Shi Hailiang, Xiong Wei, Li Zhiwei, et al.. Phase error correction of spatial heterodyne spectrometer [J]. Acta Optica Sinica, 2013, 33(3): 0330003.
[8] [8] Wu Jun, Wang Xianhua, Fang Yonghua, et al.. Abilitiy analysis of spatial heterodyne spectrometer in atmospheric CO2 detection [J]. Acta Optica Sinica, 2011, 31(1): 0101001.
[9] [9] Mao Jianping, K S Randolph. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight [J]. Appl Opt, 2004, 43(4): 914-927.
[10] [10] Zhou Mandi. Atmospheric Carbon Dioxide (CO2) Retrieval and Sensitivity Studies from Satellite Observations [D]. Shanghai: East China Normal University, 2013.
[11] [11] Wu Jun. Research on Radiative Transfer Characteristics and Retrieval Methods for Atmospheric CO2 Monitoring [D]. Hefei: University of Science and Technology of China, 2013.
[12] [12] T Dohi, T Suzuki. Attainment of high resolution holographic Fourier transform spectroscopy [J]. Appl Opt, 1971, 10(5): 1137-1140.
[13] [13] J M Harlander. Spatial Heterodyne Spectroscopy: Interferometric Performance at Any Wavelength without Scanning [D]. Madison: University of Wisconsin-Madison, 1991. 141-147.
[14] [14] F L Roesler, J M Harlander. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning [C]. SPIE, 1990, 1318: 234-243.
[15] [15] D Crisp, P L Decola, C E Miller. NASA orbiting carbon observatory: measuring the column averaged carbon dioxide mole fraction from space [J]. Journal of Applied Remote Sensing, 2008, 2(1): 23508-23508.
[16] [16] Zheng Yuquan. Development status of remote sensing instruments for greenhouse gases [J]. Chinese Optics, 2011, 4(6): 546-561.
[17] [17] H Takashi, K Yutaka, A Kuze, et al.. Fourier transform spectrometer for greenhouse gases observing satellite (GOSAT) [C]. SPIE, 2005, 5659: 73-80.
[18] [18] Y Yoshida, N Eguchi, Y Ota, et al.. Algorithm theoretical basis document (ATBD) for CO2 and CH4 column amounts retrieval from GOSAT TANSO-FTS SWIR [J]. Nies, Gosat Project Document (NIES-GOSAT-PO-014) Version, 2010, 1: 1-77.
Get Citation
Copy Citation Text
Wei Qiuye, Wang Xianhua, Ye Hanhan, Li Zhiwei, Jiang Xinhua, Bu Tingting. Research of Spatial Heterodyne Spectroscopy for Atmospheric CO2 Remote Sensing with High Precision[J]. Acta Optica Sinica, 2014, 34(8): 801006
Category: Atmospheric Optics and Oceanic Optics
Received: Jan. 6, 2014
Accepted: --
Published Online: Jun. 24, 2014
The Author Email: Qiuye Wei (weiqiuye0728@qq.com)