Chinese Journal of Lasers, Volume. 50, Issue 6, 0614001(2023)
Investigation of EfficientTerahertz Wave Generation by Coupled Cascade Difference Frequency Generation
[1] Kim M, Pallecchi E, Ge R J et al. Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems[J]. Nature Electronics, 3, 479-485(2020).
[2] Ding J J, Wang Y Y, Zhang J et al. Wired transmission of PS-PAM8 signal at W-band over terahertz hollow-core fiber[J]. Acta Optica Sinica, 41, 2406003(2021).
[3] Yang Y H, Yamagami Y, Yu X B et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 14, 446-451(2020).
[4] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).
[5] Zhong Y F, Ren J J, Li L J et al. Pulsed terahertz nondestructive detection tomography based on fringe suppression technology[J]. Chinese Journal of Lasers, 47, 1014001(2020).
[6] Wang J, Zhang J, Chang T Y et al. Terahertz nondestructive imaging for foreign object detection in glass fibre-reinforced polymer composite panels[J]. Infrared Physics & Technology, 98, 36-44(2019).
[7] Niessen K A, Xu M Y, George D K et al. Protein and RNA dynamical fingerprinting[J]. Nature Communications, 10, 1026(2019).
[8] Vinh N Q, Sherwin M S, Allen S J et al. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water[J]. The Journal of Chemical Physics, 142, 164502(2015).
[9] Smolyanskaya O A, Schelkanova I J, Kulya M S et al. Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods[J]. Biomedical Optics Express, 9, 1198-1215(2018).
[10] Wang Y Y, Jiang B Z, Xu D G et al. Continuous terahertz wave biological tissue imaging technology based on focal plane array[J]. Acta Optica Sinica, 41, 0711001(2021).
[11] Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner[J]. Nature Photonics, 10, 809-813(2016).
[12] Fülöp J A, Ollmann Z, Lombosi C et al. Efficient generation of THz pulses with 0.4 mJ energy[J]. Optics Express, 22, 20155-20163(2014).
[13] Ravi K, Hemmer M, Cirmi G et al. Cascaded parametric amplification for highly efficient terahertz generation[J]. Optics Letters, 41, 3806-3809(2016).
[14] Wang L, Fallahi A, Ravi K et al. High efficiency terahertz generation in a multi-stage system[J]. Optics Express, 26, 29744-29768(2018).
[15] Li Z Y, Sun X Q, Zhang H T et al. High-efficiency terahertz wave generation in aperiodically poled lithium niobate by cascaded difference frequency generation[J]. Journal of the Optical Society of America B, 37, 2416-2422(2020).
[16] Li Z Y, Wang S L, Wang M T et al. Theoretical analysis of terahertz generation from a compact optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates[J]. Journal of Optics, 19, 105503(2017).
[17] Ravi K, Schimpf D N, Kärtner F X. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate[J]. Optics Express, 24, 25582-25607(2016).
[18] Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied Optics, 41, 5040-5044(2002).
[19] Alford W J, Smith A V. Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, beta-BaB2O4, KH2PO4, and LiB3O5 crystals: a test of Miller wavelength scaling[J]. Journal of the Optical Society of America B, 18, 524-533(2001).
[20] Jundt D H. Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Optics Letters, 22, 1553-1555(1997).
[21] Pálfalvi L, Hebling J, Kuhl J et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range[J]. Journal of Applied Physics, 97, 123505(2005).
[22] Verma S, Bahuguna K C, Chitra et al. Investigation of adhesive-free bonded potassium titanyl phosphate crystal based optical parametric oscillator for generation of 2.1 µm wavelength at high repetition rate[J]. Infrared Physics & Technology, 92, 244-248(2018).
[23] L’huillier J A, Torosyan G, Theuer M et al. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate-part 2: experiments[J]. Applied Physics B, 86, 197-208(2007).
Get Citation
Copy Citation Text
Zhongyang Li, Qianze Yan, Xinghai Chen, Pibin Bing, Sheng Yuan, Kai Zhong, Jianquan Yao. Investigation of EfficientTerahertz Wave Generation by Coupled Cascade Difference Frequency Generation[J]. Chinese Journal of Lasers, 2023, 50(6): 0614001
Category: terahertz technology
Received: Mar. 11, 2022
Accepted: Apr. 14, 2022
Published Online: Mar. 6, 2023
The Author Email: Li Zhongyang (thzwave@163.com)