Acta Optica Sinica, Volume. 38, Issue 11, 1115007(2018)

Stereo Matching Method Based on Improved Cost Computation and Adaptive Guided Filter

Li Yan*, Rui Wang*, Hua Liu, and Changjun Chen
Author Affiliations
  • School of Geodesy and Geomatics, Wuhan University, Wuhan, Hubei 430079, China
  • show less
    Figures & Tables(15)
    Diagram of proposed method
    Initial disparity maps based on different cost methods for Tsukuba. (a) Absolute difference in images gradients; (b) absolute difference in enhanced images gradients; (c) traditional Census transform; (d) Census transformation based on enhanced images gradients
    Schematic of adaptive window construction. (a) Cross-based support region construction; (b) adaptive window in Ref. [17]; (c) adaptive window in Ref. [14]; (d) adaptive window in proposed method
    Disparity maps under different illumination conditions for Aloe and Baby1. (a) Left image; (b) right image; (c) ground truth; (d) SAD+Grad; (e) AD+Cen; (f) AD+Grad+Cen; (g) proposed cost computation
    Disparity maps with different exposures for Aloe and Baby1. (a) Left image; (b) right image; (c) ground truth; (d) SAD+Grad; (e) AD+Cen; (f) AD+Grad+Cen; (g) proposed cost computation
    Disparity maps of different cost aggregation algorithms for textureless images. (a) Left images; (b) ground truth maps; (c) results of local stereo method based on guided filter; (d) error maps for method based on guided filter; (e) results of the proposed method; (f) error maps of the proposed method
    Experimental results on different parameter settings
    • Table 1. Experimental parameter settings

      View table

      Table 1. Experimental parameter settings

      ParameterValueParameterValue
      λGRAD25λCTg15
      τ130L131
      τ26L280
      dLim9ε0.012
    • Table 2. Error matching rates of various cost computations under different illuminations%

      View table

      Table 2. Error matching rates of various cost computations under different illuminations%

      AlgorithmAloeBaby1Bowling1Cloth1FlowerpotsRocks1Avg
      SAD+Grad32.17516.88240.90010.82953.52827.23830.259
      AD+Cen32.27425.05546.14713.21256.00018.73231.903
      AD+Grad+Cen37.14923.17546.65812.69072.10632.37537.359
      Proposed22.03411.11526.94611.33334.18513.84919.910
    • Table 3. Error matching rates of various cost computations under different exposures%

      View table

      Table 3. Error matching rates of various cost computations under different exposures%

      AlgorithmAloeBaby1Bowling1Cloth1FlowerpotsRocks1Avg
      SAD+Grad52.51050.67246.43450.17887.56279.77361.188
      AD+Cen16.17311.11820.02211.09641.02115.32919.127
      AD+Grad+Cen31.01230.18231.37413.54377.59044.21837.987
      Proposed15.20510.65822.78211.06029.83414.09417.272
    • Table 4. Error matching rates of various cost computations without radiometric changes%

      View table

      Table 4. Error matching rates of various cost computations without radiometric changes%

      AlgorithmAloeBaby1Bowling1Cloth1FlowerpotsRocks1Avg
      SAD+Grad12.40912.00926.1229.61920.69710.59815.242
      AD+Cen13.61011.81123.85910.47522.67612.76615.866
      AD+Grad+Cen15.34912.35024.56311.23621.83212.58616.319
      Proposed14.4789.74918.66311.08518.64412.00814.104
    • Table 5. Error matching rates of different algorithms for different images%

      View table

      Table 5. Error matching rates of different algorithms for different images%

      AlgorithmTsukubaVenusTeddyConesAvg
      n-occalldiscn-occalldiscn-occalldiscn-occalldisc
      GF2.212.598.560.320.684.314.778.6213.12.537.907.675.27
      Proposed1.741.958.350.230.423.173.957.8810.82.808.118.254.80
    • Table 6. Error matching rates of different algorithms in all regions%

      View table

      Table 6. Error matching rates of different algorithms in all regions%

      AlgorithmAloeBaby1Baby2Baby3Bowling1Bowling2
      GF7.4072.5755.5345.9817.94012.184
      Proposed8.6264.09210.6356.19714.63614.794
      AlgorithmCloth1Cloth2Cloth3Cloth4FlowerpotsLampshade1
      GF2.9608.6133.9408.39312.40511.223
      Proposed3.22510.4184.3328.45412.6969.540
      AlgorithmLampshade2Midd1Midd2MonopolyPlasticRocks1
      GF15.72937.65335.38122.80332.6664.183
      Proposed8.57013.85716.2707.33525.7244.968
      AlgorithmRocks2Wood1Wood2Avg(all)
      GF3.5873.8290.96511.712
      Proposed3.9738.5740.4849.400
    • Table 7. Error matching rates of different algorithms for textureless images%

      View table

      Table 7. Error matching rates of different algorithms for textureless images%

      AlgorithmLampshade1Lampshade2Midd1Midd2MonopolyPlasticAvg
      CostFilter23.24231.81148.99345.20036.79643.75838.300
      CS-GF10.7208.63429.12725.89214.43922.17818.498
      CS-MST14.95516.36018.29417.49630.62637.93322.610
      CS-ST13.20112.18816.0729.58724.05330.72417.638
      Proposed9.5408.57013.85716.2707.33525.72413.549
    • Table 8. Runtime comparison of different algorithms for benchmark stereo imagess

      View table

      Table 8. Runtime comparison of different algorithms for benchmark stereo imagess

      AlgorithmTsukubaVenusTeddyCones
      CostFilter1.182.466.416.47
      CS-GF2.765.1215.0715.55
      CS-MST2.142.595.885.98
      CS-ST1.952.515.575.61
      Proposed3.425.8514.46914.253
    Tools

    Get Citation

    Copy Citation Text

    Li Yan, Rui Wang, Hua Liu, Changjun Chen. Stereo Matching Method Based on Improved Cost Computation and Adaptive Guided Filter[J]. Acta Optica Sinica, 2018, 38(11): 1115007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 23, 2018

    Accepted: Jul. 12, 2018

    Published Online: May. 9, 2019

    The Author Email:

    DOI:10.3788/AOS201838.1115007

    Topics