Journal of Inorganic Materials, Volume. 36, Issue 11, 1125(2021)
[15] KARADENIZ S M, TATAR D, ERTUGRUL M et al. Structural, optical and electrochromic properties of WO3 thin films prepared by chemical spray pyrolysis
[30] DIRAC P A M[M]. The Principles of Quantum Mechanics, 1-22(1958).
[32] BORN M, HUANG K[M]. Dynamical Theory of Crystal Lattices, 104-113(1958).
[37] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 140, 1133-1138(1965).
[40] FERMI E. Un metodo statistico per la determinazione di alcune Priorieta dell atome[J]. Rend. Accad. Naz. Lincei, 6, 602(1927).
[41] DIRAC P A M. Note on exchange phenomena in the thomas-fermi atom[J]. Proceedings of the Cambridge Philosophical Royal Society, 26, 376(1930).
[42] SLATER J C. A simplification of the hartree-fock method[J]. Self-Consistent Fields in Atoms, 81, 215-230(1975).
[59] TANG B L, JIANG G H, CHEN W X et al. First-principles study on hexagonal WO3 for HCHO gas sensing application[J]. Acta Metallurgica Sinica-English Letters, 28, 772-780(2015).
[60] HAN X, YIN X H. Density functional theory study of the NO2-sensing mechanism on a WO3(001) surface: the role of surface oxygen vacancies in the formation of NO and NO3[J]. Molecular Physics, 114, 3546-3555(2016).
[61] QIN Y X, LIU M, HUA D Y. First-principles study of the electronic structure and NO2-sensing properties of Ti-doped W18O49 nanowire[J]. Acta Physica Sinica, 63, 207101(2014).
[62] QIN Y X, YE Z H. DFT study on interaction of NO2 with the vacancy-defected WO3 nanowires for gas-sensing[J]. Sensors and Actuators B-Chemical, 222, 499-507(2016).
[63] BAI S L, ZHANG K W, WANG L S et al. Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres[J]. Journal of Materials Chemistry A, 2, 7927-7934(2014).
[64] YAKOVKIN I N, GUTOWSKI M. Driving force for the WO3(001) surface relaxation[J]. Surface Science, 601, 1481-1488(2007).
[66] YANG H H, SUN H G, LI Q T et al. Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: first-principle calculation[J]. Vacuum, 164, 411-420(2019).
[68] ZHENG T T, SANG W, HE Z H et al. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution[J]. Nano Letters, 17, 7968-7973(2017).
[70] WANG F G, DI VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting: hints from density functional theory[J]. Journal of Physical Chemistry C, 116, 8901-8909(2012).
[71] ZHANG T, ZHU Z L, CHEN H N et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study[J]. Nanoscale, 7, 2933-2940(2015).
[72] HUANG W C, WANG J X, BIAN L et al. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-
[73] ZHANG N, LI X Y, LIU Y F et al. Defective tungsten oxide hydrate nanosheets for boosting aerobic coupling of amines: synergistic catalysis by oxygen vacancies and bronsted acid sites[J]. Small, 13, 1701354(2017).
[74] ZHANG N, JALIL A, WU D X et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. Journal of the American Chemical Society, 140, 9434-9443(2018).
[75] ZHANG N, LONG R, GAO C et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Science China-Materials, 61, 771-805(2018).
[76] LI M Q, ZHANG N, LONG R et al. PdPt alloy nanocatalysts supported on TiO2: maneuvering metal-hydrogen interactions for light-driven and water-donating selective alkyne semihydrogenation[J]. Small, 13, 1604173(2017).
[77] WANG Z, WANG X Y, CONG S et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development[J]. Materials Science & Engineering R-Reports, 140, 100524(2020).
[78] YAO Y J, ZHAO Q, WEI W et al. WO3 quantum-dots electrochromism[J]. Nano Energy, 68, 104350(2020).
[79] LIN H, ZHOU F, LIU C P et al. Non-grotthuss proton diffusion mechanism in tungsten oxide dihydrate from first-principles calculations[J]. Journal of Materials Chemistry A, 2, 12280-12288(2014).
[80] HJELM A, GRANQVIST C G, WILLS J M. Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3[J]. Physical Review B, 54, 2436-2445(1996).
[81] WISEMAN P J, DICKENS P G. Neutron-diffraction studies of cubic tungsten bronzes[J]. Journal of Solid State Chemistry, 17, 91-100(1976).
[82] YANG S, CHA J, KIM J C et al. Monolithic interface contact engineering to boost optoelectronic performances of 2D semiconductor photovoltaic heterojunctions[J]. Nano Letters, 20, 2443-2451(2020).
[85] KOCER C P, GRIFFITH K J, GREY C P et al. Cation disorder and lithium insertion mechanism of Wadsley-Roth crystallographic shear phases from first principles[J]. Journal of the American Chemical Society, 141, 15121-15134(2019).
[86] KARIM N A, KAMARUDIN S K, SHYUAN L K et al. Study on the electronic properties and molecule adsorption of W18O49 nanowires as a catalyst support in the cathodes of direct methanol fuel cells[J]. Journal of Power Sources, 288, 461-472(2015).
[87] ZHANG Z F, CHEN J L, LI H B et al. Vapor-solid nanotube growth
[88] ZHANG Z F, WANG Y, LI H B et al. Atomic-scale observation of vapor-solid nanowire growth
[89] ZHANG Z F, SHENG L P, CHEN L et al. Atomic-scale observation of pressure-dependent reduction dynamics of W18O49 nanowires using environmental TEM[J]. Physical Chemistry Chemical Physics, 19, 16307-16311(2017).
[90] CHEN L, LAM S, ZENG Q H et al. Effect of cation intercalation on the growth of hexagonal WO3 nanorods[J]. Journal of Physical Chemistry C, 116, 11722-11727(2012).
[91] JIANG S, CHEKINI M, QU Z B et al. Chiral ceramic nanoparticles and peptide catalysis[J]. Journal of the American Chemical Society, 139, 13701-13712(2017).
[92] GU L J, MA C L, ZHANG X H et al. Populating surface-trapped electrons towards SERS enhancement of W18O49 nanowires[J]. Chemical Communications, 54, 6332-6335(2018).
[93] MEHMOOD F, PACHTER R, MURPHY N R et al. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations[J]. Journal of Applied Physics, 120, 233105(2016).
[94] MIGAS D B, SHAPOSHNIKOV V L, RODIN V N et al. Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3[J]. Journal of Applied Physics, 108, 093713(2010).
[95] SAI L W, TANG L L, HUANG X M et al. Lowest-energy structures of (WO3)
[96] HUANG X, ZHAI H J, LI J et al. On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3O
[98] JIANG P G, XIAO Y Y, LIU W J et al. Hydrogen reduction characteristics of WO3 based on density functional theory[J]. Results in Physics, 12, 896-902(2019).
[99] LIU W J, JIANG P G, XIAO Y Y et al. A study of the hydrogen adsorption mechanism of W18O49 using first-principles calculations[J]. Computational Materials Science, 154, 53-59(2018).
Get Citation
Copy Citation Text
Linyan ZHAO, Yangsi LIU, Xiaoli XI, Liwen MA, Zuoren NIE.
Category: REVIEW
Received: Nov. 28, 2020
Accepted: --
Published Online: Dec. 20, 2021
The Author Email: Xiaoli XI (xixiaoli@bjut.edu.cn)