Chinese Journal of Lasers, Volume. 49, Issue 8, 0802006(2022)
Finite Element Simulation of Temperature Field During SEBM Process of Pure Tungsten
[1] Guo M, Gu D D, Xi L X et al. Formation of scanning tracks during selective laser melting (SLM) of pure tungsten powder: morphology, geometric features and forming mechanisms[J]. International Journal of Refractory Metals and Hard Materials, 79, 37-46(2019).
[2] Lassner E, Schubert W D[M]. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds, 9-10(1999).
[4] Tang H P. Research progress on engineering application of Ti-6Al-4V alloy fabricated by selective electron beam melting process[J]. Materials China, 39, 551-558(2020).
[5] Zäh M F, Lutzmann S. Modelling and simulation of electron beam melting[J]. Production Engineering, 4, 15-23(2010).
[6] Wang D, Ou Y H, Dou W H et al. Research progress on spatter behavior in laser powder bed fusion[J]. Chinese Journal of Lasers, 47, 0900001(2020).
[7] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).
[8] Sani I[D]. Selective laser melting process simulation: advancements towards a cost-effective model(2015).
[9] Lu C, Xiao M Z, Qu Y B et al. Evolution mechanism of powder properties of recycled 316L stainless steel in selective laser melting[J]. Chinese Journal of Lasers, 48, 1402009(2021).
[10] Galati M, Iuliano L. A literature review of powder-based electron beam melting focusing on numerical simulations[J]. Additive Manufacturing, 19, 1-20(2018).
[11] Shen N G, Chou K. Thermal modeling of electron beam additive manufacturing process: powder sintering effects[C], 287-295(2013).
[12] Cheng B, Price S, Lydon J et al. On process temperature in powder-bed electron beam additive manufacturing: model development and validation[J]. Journal of Manufacturing Science and Engineering, 136, 061018(2014).
[13] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective laser melting[J]. Additive Manufacturing, 12, 240-251(2016).
[14] Fu C H, Guo Y B. 3-dimensional finite element modeling of selective laser melting Ti-6Al-4V alloy[C], 1129-1144(2014).
[15] Foroozmehr A, Badrossamay M, Foroozmehr E et al. Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed[J]. Materials & Design, 89, 255-263(2016).
[16] Galati M, Iuliano L, Salmi A et al. Modelling energy source and powder properties for the development of a thermal FE model of the EBM additive manufacturing process[J]. Additive Manufacturing, 14, 49-59(2017).
[17] Wen S[D]. Research of temperature and stress distribution in GH536 superalloy selective laser melting, 16-18(2018).
[18] Zhou X, Liu W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder[J]. Chinese Journal of Lasers, 43, 0503006(2016).
[19] Nguyen T, Ohta A, Matsuoka K et al. Analytical solutions for transient temperature of semi-Infinite body subjected to 3D moving heat sources[J]. Welding Journal, 78, 265-274(1999).
[20] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 15, 299-305(1984).
[21] Fachinotti V D, Anca A A, Cardona A. Analytical solutions of the thermal field induced by moving double-ellipsoidal and double-elliptical heat sources in a semi-infinite body[J]. International Journal for Numerical Methods in Biomedical Engineering, 27, 595-607(2011).
[22] Tolias P. Analytical expressions for thermophysical properties of solid and liquid tungsten relevant for fusion applications[J]. Nuclear Materials and Energy, 13, 42-57(2017).
[24] Tolochko N K, Arshinov M K, Gusarov A V et al. Mechanisms of selective laser sintering and heat transfer in Ti powder[J]. Rapid Prototyping Journal, 9, 314-326(2003).
[25] Gusarov A V, Laoui T, Froyen L et al. Contact thermal conductivity of a powder bed in selective laser sintering[J]. International Journal of Heat and Mass Transfer, 46, 1103-1109(2003).
[26] An N, Yang G Y, Yang K et al. Implementation of Abaqus user subroutines and plugin for thermal analysis of powder-bed electron-beam-melting additive manufacturing process[J]. Materials Today Communications, 27, 102307(2021).
[27] Wang D Z, Yu C F, Zhou X et al. Dense pure tungsten fabricated by selective laser melting[J]. Applied Sciences, 7, 430(2017).
[28] Heinzel A, Boerner V, Gombert A et al. Microstructured tungsten surfaces as selective emitters[J]. AIP Conference Proceedings, 460, 191-196(1999).
[29] Tan C L, Zhou K S, Ma W Y et al. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties[J]. Science and Technology of Advanced Materials, 19, 370-380(2018).
[30] Craeghs T, Clijsters S, Yasa E et al. Determination of geometrical factors in Layerwise laser melting using optical process monitoring[J]. Optics and Lasers in Engineering, 49, 1440-1446(2011).
Get Citation
Copy Citation Text
Jing Jiang, Ning An, Guangyu Yang, Jian Wang, Huiping Tang, Meie Li. Finite Element Simulation of Temperature Field During SEBM Process of Pure Tungsten[J]. Chinese Journal of Lasers, 2022, 49(8): 0802006
Category: laser manufacturing
Received: Aug. 18, 2021
Accepted: Sep. 22, 2021
Published Online: Mar. 25, 2022
The Author Email: Meie Li (limeie@xjtu.edu.cn)