Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1215010(2025)

Cross-Modal Pedestrian Re-Identification Combining Frequency-Domain Attention and Modal Co-Feature Optimization

Taizhe Tan1,2, Mengrou Li1、*, Zhuo Yang1,3, and Zhiyuan Gong1
Author Affiliations
  • 1School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, Guangdong , China
  • 2Heyuan Bay Area Digital Economy Technology Development Co., Ltd., Heyuan 517400, Guangdong , China
  • 3Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, Guangdong , China
  • show less
    Figures & Tables(13)
    Overall framework of FMCO-Net
    Structure of FCA module
    Structure of MCG module
    Structure of MPR module
    T-SNE distribution images
    Comparative heatmaps of shared features before and after enhancement
    Visualization comparison of the retrieval results between the proposed method and the baseline method
    • Table 1. Performances comparison on the SYSU-MM01 dataset by different methods

      View table

      Table 1. Performances comparison on the SYSU-MM01 dataset by different methods

      MethodRank-1 accuracyRank-10 accuracymAP
      All-searchIndoor-searchAll-searchIndoor-searchAll-searchIndoor-search
      Zeropadding1114.8020.5854.1268.3815.9526.92
      JSIA-ReID838.1043.8080.7086.2036.9052.90
      AlignGAN2042.4045.9085.0087.6040.7054.30
      AGW1447.5054.1784.3991.1447.6562.97
      DDAG1754.7561.0290.3994.0653.0267.98
      FMCNet466.3473.4462.5156.06
      MDRA1970.5572.6994.9097.1563.8977.14
      MPANet3070.5876.7496.1098.2168.2480.95
      MMN3170.6076.2096.2097.2066.9079.60
      MCJA3274.4882.7996.9998.8871.3485.26
      DEEN1374.7080.3097.6099.0071.8083.30
      MUN2976.2479.4297.8498.0973.8182.06
      IDKL2681.4287.1497.3898.2879.8589.37
      Proposed82.1489.3597.9898.7981.5990.85
    • Table 2. Performances comparison on the RegDB dataset by different methods

      View table

      Table 2. Performances comparison on the RegDB dataset by different methods

      MethodRank-1 accuracyRank-10 accuracymAP
      Visible to infraredInfrared to visibleVisible to infraredInfrared to visibleVisible to infraredInfrared to visible
      Zeropadding1117.8016.6034.2034.7018.9017.80
      JSIA-ReID848.5048.1049.3048.90
      AlignGAN2057.9056.3053.6053.40
      AGW1470.0570.4986.2187.2167.6465.90
      DDAG1769.3468.0686.1985.1563.4661.80
      FMCNet489.1088.4084.4083.90
      MDRA1991.8097.4682.08
      MPANet3083.7082.8080.9080.70
      MMN3191.6087.5097.7096.0084.1080.50
      MCJA3291.8088.0686.0883.06
      DEEN1391.1089.5097.8096.8085.1083.40
      MUN2995.1991.8687.1585.01
      IDKL2694.7294.2290.1990.43
      Proposed95.3994.37100.00100.0094.8494.84
    • Table 3. Performances comparison on the LLCM dataset by different methods

      View table

      Table 3. Performances comparison on the LLCM dataset by different methods

      MethodRank-1 accuracymAP
      Visible to infraredInfrared to visibleVisible to infraredInfrared to visible
      DDAG1740.348.048.452.3
      AGW1443.651.551.855.3
      MMN3152.559.958.962.7
      DEEN1354.962.562.965.8
      IDKL2672.2270.7266.4365.19
      Proposed73.6371.2265.8365.70
    • Table 4. Ablation experimental results of different components on the SYSU-MM01 dataset under all-search and single-shot setting unit: %

      View table

      Table 4. Ablation experimental results of different components on the SYSU-MM01 dataset under all-search and single-shot setting unit: %

      MethodBaselineTGSA+CSALsLprFCALvarRank-1 accuracymAP
      a65.8166.49
      b67.1867.59
      c69.8871.69
      d77.5176.80
      e78.2877.80
      f79.0178.79
      g80.2479.89
      h80.8780.26
      i82.1481.59
    • Table 5. Comparison of FCA and other attention modules on the LLCM dataset

      View table

      Table 5. Comparison of FCA and other attention modules on the LLCM dataset

      MethodRank-1 accuracymAP
      Visible to infraredInfrared to visibleVisible to infraredInfrared to visible
      FCA→NL3367.8965.3256.5755.63
      FCA→SNT3468.8466.5459.2257.66
      FCA→SE2770.0169.2760.7163.19
      FCA→CBAM3572.9471.0163.4664.88
      Proposed73.6371.2265.8365.70
    • Table 6. Model complexity results

      View table

      Table 6. Model complexity results

      ModelModel memory /MBTraining time /s
      AGW14272.2292.14
      DEEN13339.66284.90
      Proposed297.73173.21
    Tools

    Get Citation

    Copy Citation Text

    Taizhe Tan, Mengrou Li, Zhuo Yang, Zhiyuan Gong. Cross-Modal Pedestrian Re-Identification Combining Frequency-Domain Attention and Modal Co-Feature Optimization[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1215010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Nov. 15, 2024

    Accepted: Jan. 6, 2025

    Published Online: Jun. 9, 2025

    The Author Email: Mengrou Li (2794653908@qq.com)

    DOI:10.3788/LOP242267

    Topics