NUCLEAR TECHNIQUES, Volume. 48, Issue 6, 060014(2025)

Conceptual design of a lunar surface heat pipe molten salt reactor

Kun LIU1,2,3, Ming LIN1, Rui LI1, Xiandi ZUO1, Maosong CHENG1,2, and Zhimin DAI1,2、*
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Eastern Regional Office of the Nuclear and Radiation Safety Inspection, Shanghai 200233, China
  • show less
    Figures & Tables(21)
    Layout of reactor core of LHPMSR (color online)
    General arrangement diagram of LHPMSR (color online)
    Schematic diagram of thermal resistance network
    Normalized radial distribution of neutron flux
    Power distribution of LHPMSRl
    The variation of keff with the rotation of the control drum
    Variations of keff during its lifetime
    Radiation dose distribution (color online)
    1/12 core geometry model (color online)
    Core grid (color online)(a) Overall grid, (b) Cross-sectional grid of molten salt channel
    Variation of the average nusselt number with the number of grids
    Core temperature distribution (color online)
    Heat pipe temperature distribution (color online)
    Molten salt velocity distribution
    • Table 1. Main parameters of LHPMSR

      View table
      View in Article

      Table 1. Main parameters of LHPMSR

      名称Name参数Parameter
      热功率Thermal power / kW400
      电功率Electrical power / kW100
      寿期Lifetime / a20

      燃料盐成分

      Fuel salt constituents

      LiF-UF4(77.5~22.5 mol%)
      235U富集度 ²³⁵U enrichment / mol%93

      燃料富集度配置

      Fuel lattice configuration

      93%, 76%, 60%
      堆芯高度 Core height / cm64
      堆芯直径Core diameter / cm54.4
      反应性控制 Reactivity control控制鼓 Control drum
      控制鼓材料 Control drum materialAl2O3, B4C
      控制鼓个数 Number of control drums12
      反射层厚度Radial reflector thickness / cm9
      反射层材料 Reflector compositionAl2O3
      冷却方式Heat removal mechanism钠热管 Sodium heatpipe
      热管数量 Heat pipe array quantity156
      屏蔽材料 Shielding compositionLiH, B4C
      热管半径 HP outer radius / cm1.2, 1.3, 1.4
    • Table 2. Thermal resistance calculation method

      View table
      View in Article

      Table 2. Thermal resistance calculation method

      热阻Thermal resistance计算方法Calculation method

      蒸发段管壁径向热阻

      Radial TR of the evaporator wall

      Re,w=ln (rw/rwk)2 πkwLe

      蒸发段吸液心径向热阻

      Radial TR of the evaporator wick

      Re,wk=ln (rwk/rv)2 πkwkLe

      蒸发段汽液界面热阻

      Radial TR of the evaporator convection interface

      Re,int=12α2-αhfg2Tvvfg12πRgTv 1-Pe,vvfg2hfgAe

      绝热段管壁轴向热阻

      Axial TR of the adiabatic wall

      Ra,w=Laπkw(rw2-rwk2)

      绝热段吸液心轴向热阻

      Axial TR of the adiabatic wick

      Ra,wk=Laπkwk(rwk2-rv2)

      绝热段蒸汽轴向热阻

      Axial TR of the adiabatic vapor

      Rv=8RgμvTv2πhfg2Pvρv(Lc+Le)/2+Larwk4

      冷凝段管壁热阻

      Radial TR of the condenser wall

      Rc,w=ln (rw/rwk)2 πkwLc

      冷凝段吸液心径向热阻

      Radial TR of the condenser wick

      Rc,wk=ln (rwk/rv)2 πkwkLc

      冷凝段汽液界面热阻

      Radial TR of the condenser convection interface

      Rc,int=12α2-αhfg2Tvvfg12πRgTv 1-Pc,vvfg2hfgAc
    • Table 3. Fuel and fission products after 20 a of operation

      View table
      View in Article

      Table 3. Fuel and fission products after 20 a of operation

      核素Nuclide质量Weight / g
      234U5.041
      235U5.317×105
      236U2.373×103
      238U4.068×104
      237Np6.126
      239Np4.146×10-2
      238Pu2.521×10-2
      239Pu1.143×102
      240Pu2.454×10-1
      241Pu4.257×10-4
      242Pu4.916×10-7
      3H6.995×10-3
      138Ba3.318×102
      81Br5.996
      142Ce2.924×102
      144Ce1.205×10
      133Cs3.175×102
      135Cs3.151×102
      129I2.796×10
      131I1.661×10-1
      84Kr2.982×10
      86Kr6.085×10
      139La3.169×102
      100Mo2.242×102
      95Nb1.162
      143Nd2.999×102
      147Pm1.686×10
      87Rb8.048×10
      103Rh1.124×102
      101Ru1.857×102
      149Sm5.639×10
      131Xe1.376×102
      89Y1.465×102
    • Table 4. Radiation dose rate at 1 000 m distance for varied shield thickness configuration

      View table
      View in Article

      Table 4. Radiation dose rate at 1 000 m distance for varied shield thickness configuration

      屏蔽情况Radiation shield1 000 m处剂量水平Dose level at 1 000 m / mSv·a-1
      10 cm LiH 20 cm W 10 cm LiH 5 cm B4C28.1
      9 cm LiH 19 cm W 10 cm LiH 5 cm B4C77.5
      10 cm LiH 19 cm W 10 cm LiH 5 cm B4C40.8
    • Table 5. Core geometry parameters

      View table
      View in Article

      Table 5. Core geometry parameters

      内容Cotent参数Parameters
      堆芯热功率Thermal power / kWe400
      活性区高度Height / mm640

      活性区对边距

      Active zone opposite side distance / mm

      544
      堆芯总高度Core height / mm1 140
      堆芯直径Core diameter / mm890
      热管中心距Heat pipe center distance / mm41.9
      热管数量Number of heat pipes156
      热管半径Heat pipe radius / mm1.2, 1.3, 1.4
      热管长度Heat pipe length / mm640
    • Table 6. Material properties

      View table
      View in Article

      Table 6. Material properties

      材料

      Material

      密度

      Density / kg·m-3

      比热容Specific heat capacity / J·kg-1·K-1热导率Thermal conductivity / W·m-1·K-1

      黏度

      Viscosity / Pa·s

      氧化铝Al₂O33 9501 13030-
      碳化硅SiC3 2251 100270-
      石墨Graphite2 2501 940120~200-
      氢化锂LiH8303 3003.5-

      燃料熔盐

      Fuel molten salt

      6 105-1.272·T (K)1 0001.10.000 076 96·exp(4 976/T (K))
    • Table 7. Heat pipe operating limits

      View table
      View in Article

      Table 7. Heat pipe operating limits

      位置

      Position

      黏性极限

      Viscous limit / W

      声速极限

      Sonic limit / W

      携带极限

      Entrainment limit / W

      沸腾极限

      Boiling limit / W

      毛细极限

      Capillary limit / W

      热管传热功率

      Heat pipe thermal power / W

      内层

      Inner zone

      40 80630 0606 561978 1214 1603 366

      中区

      Middle zone

      28 70625 2125 503897 4603 7953 208

      外层

      Outer zone

      19 52020 7914 538816 7983 4252 750
    Tools

    Get Citation

    Copy Citation Text

    Kun LIU, Ming LIN, Rui LI, Xiandi ZUO, Maosong CHENG, Zhimin DAI. Conceptual design of a lunar surface heat pipe molten salt reactor[J]. NUCLEAR TECHNIQUES, 2025, 48(6): 060014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Topics of Academic Papers at The 27th Annual Meeting of the China Association for Science and Technology

    Received: Mar. 1, 2025

    Accepted: --

    Published Online: Jul. 25, 2025

    The Author Email: Zhimin DAI (戴志敏)

    DOI:10.11889/j.0253-3219.2025.hjs.48.250090

    Topics