Journal of Synthetic Crystals, Volume. 50, Issue 7, 1371(2021)

Self-Collimation Effect of Wave Propagation in Phononic Crystals

ZHANG Zhao, ZHANG Lei, GUO Jiangchuan, LI Jiarui, and WANG Yifei
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [1] [1] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217.

    [2] [2] LIU Z, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.

    [3] [3] HAN X K, ZHANG Z. Bandgap design of three-phase phononic crystal by topological optimization[J]. Wave Motion, 2020, 93: 102496.

    [9] [9] YANG H, ZHANG X, ZHAO D G, et al. The self-collimation effect induced by non-Hermitian acoustic systems[J]. Applied Physics Letters, 2019, 114(13): 133503.

    [10] [10] PREZ-ARJONA I, SNCHEZ-MORCILLO V J, REDONDO J, et al. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media[J]. Physical Review B, 2007, 75: 014304.

    [11] [11] PARK J H, MA P S, KIM Y Y. Design of phononic crystals for self-collimation of elastic waves using topology optimization method[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1199-1209.

    [12] [12] LI J, WU F G, ZHONG H L, et al. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect[J]. Journal of Applied Physics, 2015, 118(14): 144903.

    [13] [13] TAN Y X, YU T B, YU M H, et al. Simultaneous beam guides of electromagnetic and acoustic waves in defect-free phoxonic crystals using self-collimation effect[J]. Applied Physics Express, 2019, 12(6): 062015.

    [14] [14] SHU Y Y, YU M H, YU T B, et al. Design of phoxonic virtual waveguides for both electromagnetic and elastic waves based on the self-collimation effect: an application to enhance acousto-optic interaction[J]. Optics Express, 2020, 28(17): 24813-24819.

    [15] [15] GUO J C, LI J R, ZHANG Z. Interface design of low-frequency band gap characteristics in stepped hybrid phononic crystals[J]. Applied Acoustics, 2021, 182: 108209.

    [16] [16] WANG Y Z, PERRAS E, GOLUB M V, et al. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations[J]. European Journal of Mechanics - A/Solids, 2021, 88: 104266.

    [17] [17] GAO N, QU S C, SI L, et al. Broadband topological valley transport of elastic wave in reconfigurable phononic crystal plate[J]. Applied Physics Letters, 2021, 118(6): 063502.

    [18] [18] YANG S X, PAGE J H, LIU Z Y, et al. Focusing of sound in a 3D phononic crystal[J]. Physical Review Letters, 2004, 93(2): 024301.

    [21] [21] PATIL G U, MATLACK K H. Wave self-interactions in continuum phononic materials with periodic contact nonlinearity[J]. Wave Motion, 2021, 105: 102763.

    [22] [22] VAN DEN BOOM S J, VAN KEULEN F, ARAGN A M. Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 382: 113848.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Zhao, ZHANG Lei, GUO Jiangchuan, LI Jiarui, WANG Yifei. Self-Collimation Effect of Wave Propagation in Phononic Crystals[J]. Journal of Synthetic Crystals, 2021, 50(7): 1371

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 21, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics