Journal of Quantum Optics, Volume. 27, Issue 2, 130(2021)
Abnormal Flow of Heat Caused by Quantum Correlations
[1] [1] Callen, H.B. Thermodynamics and an introduction to thermostatistics[M]. John Wiley & Sons, 1985.
[2] [2] Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines[J]. Reports on Progress in Physics, 2012, 75(12): 126001. DOI: 10.1088/0034-4885/75/12/126001.
[3] [3] Jarzynski C. Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale[J]. Annual Review of Condensed Matter Physics, 2011, 2(1): 329-351. DOI: 10.1007/978-3-0348-0359-5_4.
[4] [4] Ciliberto S, Gomez-Solano R, Petrosyan A. Fluctuations, linear response, and currents in out-of-equilibrium systems[J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 235-261. DOI: 10.1146/annurev-conmatphys-030212-184240.
[5] [5] Belenchia A, Mancino L, Landi G T, et al. Entropy production in continuously measured Gaussian quantum systems[J]. npj Quantum Information, 2020, 6(1): 1-7.
[6] [6] Ahmadi B, Salimi S, Khorashad A S. Irreversible work and Maxwell demon in terms of quantum thermodynamic force[J]. Scientific Reports, 2021, 11(1): 1-9.
[7] [7] Boltzmann L. On the relation of a general mechanical theorem to the second law of thermodynamics[J]. Irreversible Processes, 1966, 22(4): 188-193. DOI: 10.1142/9781848161337_0017.
[8] [8] Lebowitz J L. Boltzmann’s entropy and time’s arrow[J]. Physics Today, 1993, 46: 32-32. DOI: 10.1063/ 1.881363.
[9] [9] Andrieux D, Gaspard P, Ciliberto S, et al. Entropy production and time asymmetry in nonequilibrium fluctuations[J]. Physical Review Letters, 2007, 98(15): 150601. DOI: 10.1103/PhysRevLett.98.150601.
[10] [10] Batalho T B, Souza A M, Sarthour R S, et al. Irreversibility and the arrow of time in a quenched quantum system[J]. Physical Review Letters, 2015, 115(19): 190601. DOI: 10.1103/PhysRevLett.115.190601.
[11] [11] Hofmann A, Maisi V F, Basset J, et al. Heat dissipation and fluctuations in a driven quantum dot[J]. Physica Status Solidi (b), 2017, 254(3): 1600546. DOI: 10.1002/pssb.201600546.
[12] [12] Alipour S, Tuohino S, Rezakhani A T, et al. Unreliability of mutual information as a measure for variations in total correlations[J]. Physical Review A, 2020, 101(4): 042311.
[13] [13] Micadei K, Peterson J P S, Souza A M, et al. Reversing the direction of heat flow using quantum correlations[J]. Nature Communications, 2019, 10(1): 1-6. DOI: 10.1038/s41467-019-10333-7.
[14] [14] Parrondo J M R, Van den Broeck C, Kawai R. Entropy production and the arrow of time[J]. New Journal of Physics, 2009, 11(7): 073008. DOI: 10.1088/1367-2630/11/7/073008.
[15] [15] Feng E H, Crooks G E. Length of tims’s arrow[J]. Physical Review Letters, 2008, 101(9): 090602. DOI: 10.1103/ PhysRevLett.101.090602.
[16] [16] Roldán , Neri I, Drpinghaus M, et al. Decision making in the arrow of time[J]. Physical Review Letters, 2015, 115(25): 250602. DOI: 10.1103/PhysRevLett.115.250602.
[17] [17] Dressel J, Chantasri A, Jordan A N, et al. Arrow of time for continuous quantum measurement[J]. Physical Review Letters, 2017, 119(22): 220507. DOI: 10.1103/PhysRevLett.119.220507.
[18] [18] Bera M N, Riera A, Lewenstein M, et al. Generalized laws of thermodynamics in the presence of correlations[J]. Nature Communications, 2017, 8(1): 1-6. DOI: 10.1038/s41467-017-02370-x.
[19] [19] Campisi M, Hnggi P. Fluctuation, dissipation and the arrow of time[J]. Entropy, 2011, 13(12): 2024-2035. DOI: 10.3390/e13122024.
[20] [20] Partovi M H. Entanglement versus Stosszahlansatz: Disappearance of the thermodynamic arrow in a high-correlation environment[J]. Physical Review E, 2008, 77(2): 021110. DOI: 10.1103/PhysRevE.77.021110.
[21] [21] Jevtic S, Jennings D, Rudolph T. Maximally and minimally correlated states attainable within a closed evolving system[J]. Physical Review Letters, 2012, 108(11): 110403. DOI: 10.1103/PhysRevLett.108.110403.
[22] [22] Jennings D, Rudolph T. Entanglement and the thermodynamic arrow of time[J]. Physical Review E, 2010, 81(6): 061130. DOI: 10.1103/PhysRevE.81.061130.
[23] [23] Baumgratz T, Cramer M, Plenio M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401. DOI: 10.1103/PhysRevLett.113.140401.
[24] [24] Jarzynski C, Wójcik D K. Classical and quantum fluctuation theorems for heat exchange[J]. Physical Review Letters, 2004, 92(23): 230602. DOI: 10.1103/PhysRevLett.92.230602.
[25] [25] Barra F. The thermodynamic cost of driving quantum systems by their boundaries[J]. Scientific Reports, 2015, 5(1): 1-10. DOI: 10.1038/srep14873.
[26] [26] Nielsen M A, Chuang I. Quantum computation and quantum information[M]. Cambridge University Press, 2010.
[27] [27] Daki B, Vedral V, Brukner. Necessary and sufficient condition for nonzero quantum discord[J]. Physical Review Letters, 2010, 105(19): 190502. DOI: 10.1103/physrevlett.105.190502.
[28] [28] Girolami D, Adesso G. Observable measure of bipartite quantum correlations[J]. Physical Review Letters, 2012, 108(15): 150403. DOI: 10.1103/PhysRevLett.108.150403.
[29] [29] Dhand I, Goyal S K. Realization of arbitrary discrete unitary transformations using spatial and internal modes of light[J]. Physical Review A, 2015, 92(4): 043813. DOI: 10.1103/PhysRevA.92.043813.
[30] [30] Altepeter J B, Branning D, Jeffrey E, et al. Ancilla-assisted quantum process tomography[J]. Physical Review Letters, 2003, 90(19): 193601. DOI: 10.1103/PhysRevLett.90.193601.
Get Citation
Copy Citation Text
WANG Zhong-liang, ZHU Gao-yan, XIAO Lei, QU Deng-ke, WANG Kun-kun, XUE Peng. Abnormal Flow of Heat Caused by Quantum Correlations[J]. Journal of Quantum Optics, 2021, 27(2): 130
Category:
Received: Mar. 4, 2021
Accepted: --
Published Online: Sep. 13, 2021
The Author Email: XUE Peng (gnep.eux@gmail.com)