Optics and Precision Engineering, Volume. 32, Issue 12, 1812(2024)
Super-resolution strain measurement in phase-contrast optical coherence elastography
[1] WANG J F, XU Y, BOPPART S A. Review of optical coherence tomography in oncology[J]. Journal of Biomedical Optics, 22, 1-23(2017).
[2] YI J, RADOSEVICH A J, ROGERS J D et al. Can OCT be sensitive to nanoscale structural alterations in biological tissue?[J]. Optics Express, 21, 9043-9059(2013).
[3] ABDOLAHI F, ZHOU X, ASHIMATEY B S et al. Optical coherence tomography angiography-derived flux as a measure of physiological changes in retinal capillary blood flow[J]. Translational Vision Science & Technology, 10, 5(2021).
[4] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A et al. Strain and elasticity imaging in compression optical coherence elastography: the two-decade perspective and recent advances[J]. Journal of Biophotonics, 14(2021).
[5] WANG S, LARIN K V. Optical coherence elastography for tissue characterization: a review[J]. Journal of Biophotonics, 8, 279-302(2015).
[6] KENNEDY K M, CHIN L, MCLAUGHLIN R A et al. Quantitative micro-elastography: imaging of tissue elasticity using compression optical coherence elastography[J]. Scientific Reports, 5, 15538(2015).
[7] GUBARKOVA E V, SOVETSKY A A, MATVEEV L A et al. Nonlinear elasticity assessment with optical coherence elastography for high-selectivity differentiation of breast cancer tissues[J]. Materials, 15, 3308(2022).
[8] HUANG P B, LIN Y K, YOU R F et al. Simultaneously measurement of strain field and Poisson’s ratio by using an off-axis phase-sensitive optical coherence elastography[J]. Measurement Science and Technology, 33(2022).
[9] ALEXANDROVSKAYA Y M, KASIANENKO E M, SOVETSKY A A et al. Spatio-temporal dynamics of diffusion-associated deformations of biological tissues and polyacrylamide gels observed with optical coherence elastography[J]. Materials, 16, 2036(2023).
[10] GORNIG D C, MALETZ R, OTTL P et al. Influence of artificial aging: mechanical and physicochemical properties of dental composites under static and dynamic compression[J]. Clinical Oral Investigations, 26, 1491-1504(2022).
[11] LARIN K V, SAMPSON D D. Optical coherence elastography - OCT at work in tissue biomechanics[J]. Biomedical Optics Express, 8, 1172-1202(2017).
[12] ZAITSEV V Y, MATVEYEV A L, MATVEEV L A et al. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography[J]. Journal of Biomedical Optics, 20, 75006(2015).
[13] MOTAGHIANNEZAM S M, KOOS D, FRASER S E. Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for
[14] DREXLER W. Ultrahigh-resolution optical coherence tomography[J]. Journal of Biomedical Optics, 9, 47-74(2004).
[15] DE WIT J, ANGELOPOULOS K, KALKMAN J et al. Fast and accurate spectral-estimation axial super-resolution optical coherence tomography[J]. Optics Express, 29, 39946-39966(2021).
[16] RATHEESH K M, SEAH L K, MURUKESHAN V M. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems[J]. Physics in Medicine and Biology, 61, 7652-7663(2016).
[17] PU W. SAE-net: a deep neural network for SAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5220714(2022).
[18] WU Y C, RIVENSON Y, ZHANG Y B et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery[J]. Optica, 5, 704(2018).
[19] CHAUDHARY S, MOON S, LU H. Fast, efficient, and accurate neuro-imaging denoising via supervised deep learning[J]. Nature Communications, 13, 5165(2022).
[20] ZHAO J X, LIU L, WANG T H et al. VDE-Net: a two-stage deep learning method for phase unwrapping[J]. Optics Express, 30, 39794-39815(2022).
[21] SUN G W, LI B Y, LI Z et al. Phase unwrapping based on channel transformer U-Net for single-shot fringe projection profilometry[J]. Journal of Optics, 1(2023).
[22] ZHOU Y, YU K, WANG M et al. Speckle noise reduction for OCT images based on image style transfer and conditional GAN[J]. IEEE Journal of Biomedical and Health Informatics, 26, 139-150(2022).
[23] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N et al. UNet++: a nested U-net architecture for medical image segmentation[J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support, 11045, 3-11(2018).
[24] WU Y X, HE K M. Group normalization[C], 3-19(2018).
[25] DONG B, HUANG N X, BAI Y L et al. Deep-learning-based approach for strain estimation in phase-sensitive optical coherence elastography[J]. Optics Letters, 46, 5914-5917(2021).
Get Citation
Copy Citation Text
Zhanhua ZHANG, Xin CAO, Weihao ZHAN, Bo DONG, Shengli XIE, Yulei BAI. Super-resolution strain measurement in phase-contrast optical coherence elastography[J]. Optics and Precision Engineering, 2024, 32(12): 1812
Category:
Received: Jan. 5, 2024
Accepted: --
Published Online: Aug. 28, 2024
The Author Email: Yulei BAI (ylbai@gdut.edu.cn)