APPLIED LASER, Volume. 44, Issue 4, 212(2024)
Analysis Research and Prospect of 3D Image Reconstruction Technology in Non-Line-of-Sight Imaging
[1] [1] MAEDA T, SATAT G, SWEDISH T, et al. Recent advances in imaging around corners[J]. arXiv, 2019: 1910.05613.
[2] [2] LEI X, HE L Y, TAN Y X, et al. Direct object recognition without line-of-sight using optical coherence[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 11729-11738.
[3] [3] WILLOMITZER F, LI F Q, RANGARAJAN P, et al. Non-line-of-sight imaging using superheterodyne interferometry[C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP). Orlando, Florida. Washington, D.C.: OSA, 2018: CM2E.1.
[4] [4] VISWANATH A, RANGARAJAN P, MACFARLANE D, et al. Indirect imaging using correlography[C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP). Orlando, Florida. Washington, D.C.: OSA, 2018: CM2E.3.
[5] [5] SMITH B M, O’TOOLE M, GUPTA M. Tracking multiple objects outside the line of sight using speckle imaging[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 6258-6266.
[6] [6] KATZ O, SMALL E, SILBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics, 2012, 6: 549-553.
[7] [7] BOGER-LOMBARD J, KATZ O. Passive optical time-of-flight for non line-of-sight localization[J]. Nature Communications, 2019, 10: 3343.
[8] [8] TORRALBA A, FREEMAN W T. Accidental pinhole and pinspeck cameras: Revealing the scene outside the picture[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 374-381.
[9] [9] BOUMAN K L, YE V, YEDIDIA A B, et al. Turning corners into cameras: Principles and methods[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 2289-2297.
[10] [10] BARADAD M, YE V, YEDIDIA A B, et al. Inferring light fields from shadows[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 6267-6275.
[11] [11] SAUNDERS C, MURRAY-BRUCE J, GOYAL V K. Computational periscopy with an ordinary digital camera[J]. Nature, 2019, 565(7740): 472-475.
[12] [12] FACCIO D, VELTEN A, WETZSTEIN G. Non-line-of-sight imaging[J]. Nature Reviews Physics, 2020, 2: 318-327.
[13] [13] GENG R X, HU Y, CHEN Y. Recent advances on non-line-of-sight imaging: Conventional physical models, deep learning, and new scenes[EB/OL]. [2021-4-28]. http://arxiv.org/abs/2104.13807
[17] [17] JIN X, DU D Y, DENG R J. Progress and prospect of non-line-of-sight imaging[J] Infrared and Laser Engineering, 2022, 51(8): 20220305.
[18] [18] KIRMANI A. Femtosecond transient imaging[D]. Gambridge: Massachusetts Institute of Technology, 2010.
[19] [19] KIRMANI A, HUTCHISON T, DAVIS J, et al. Looking around the corner using transient imaging[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009: 159-166.
[20] [20] KIRMANI A, HUTCHISON T, DAVIS J, et al. Looking Around the Corner using Ultrafast Transient Imaging[J]. International Journal of Computer Vision, 2011, 95(1): 13-28.
[21] [21] VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature Communications, 2012.
[22] [22] GUPTA O, WILLWACHER T, VELTEN A, et al. Reconstruction of hidden 3D shapes using diffuse reflections[J], Optical. Express 2012, 20(17): 19096-19108.
[23] [23] LAURENZIS M, VELTEN A. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing[J]. Journal of Electronic Imaging, 2014, 23(6): 063003.
[24] [24] LAURENZIS M, KLEIN J, BACHER E, et al. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths[J]. Optics Letters, 2015, 40(20): 4815-4818.
[25] [25] LAURENZIS M, VELTEN A. Nonline-of-sight laser gated viewing of scattered photons[J]. Optical Engineering, 2014, 53(2): 023102.
[26] [26] ARELLANO V, GUTIERREZ D, JARABO A. Fast back-projection for non-line of sight reconstruction[J]. Optics Express, 2017, 25(10): 11574-11583.
[27] [27] JIN C F, XIE J H, ZHANG S Q, et al. Reconstruction of multiple non-line-of-sight objects using back projection based on ellipsoid mode decomposition[J]. Optics Express, 2018, 26(16): 20089-20101.
[28] [28] FENG X H, GAO L. Improving non-line-of-sight image reconstruction with weighting factors[J]. Optics Letters, 2020, 45(14): 3921-3924.
[29] [29] LA MANNA M, KINE F, BREITBACH E, et al. Error backprojection algorithms for non-line-of-sight imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(7): 1615-1626.
[33] [33] MARGRAUC G, LAMOUREUX MP Numerical Methods of Exploration Seismology: With Algorithms in MATLAB[M]. Cambridge: Cambridge University Press, 2019.
[34] [34] GARCIA D, LE TARNEC L, MUTH S, et al. Stolt′s f-k migration for plane wave ultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(9): 1853-1867.
[35] [35] REZA S A, LA MANNA M, BAUER S, et al. Phasor field waves: A Huygens-like light transport model for non-line-of-sight imaging applications[J]. Optics Express, 2019, 27(20): 29380-29400.
[36] [36] REZA S A, LA MANNA M, BAUER S, et al. Phasor field waves: Experimental demonstrations of wave-like properties[J]. Optics Express, 2019, 27(22): 32587-32608.
[37] [37] LIU X C, GUILLN I, LA MANNA M, et al. Non-line-of-sight imaging using phasor-field virtual waveoptics[J]. Nature, 2019, 572: 620-623.
[38] [38] LIU X C, VELTEN A. The role of Wigner Distribution Function in Non-Line-of-Sight Imaging[C]//2020 IEEE International Conference on Computational Photography (ICCP). St. Louis, MO, USA. IEEE, 2020: 1-12.
[39] [39] LIU X C, BAUER S, VELTEN A. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems[J]. Nature Communications, 2020, 11(1): 1645.
[40] [40] LINDELL D B, WETZSTEIN G, O’TOOLE M. Wave-based non-line-of-sight imaging using fast f-k migration[J]. ACM Transactions on Graphics, 38(4): 116.
[41] [41] WU D, WETZSTEIN G, BARSI C, et al. Frequency analysis of transient light transport with applications in bare sensor imaging[M]//Computer vision-ECCV 2012. Berlin, Heidelberg: Springer, 2012: 542-555.
[42] [42] HEIDE F, XIAO L, HEIDRICH W, et al. Diffuse mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. IEEE, 2014: 3222-3229.
[43] [43] HEIDE F, HULLIN M B, GREGSON J, et al. Low-budget transient imaging using photonic mixer devices[J]. ACM Transactions on Graphics, 32(4): 45.
[44] [44] PEDIREDLA A K, BUTTAFAVA M, TOSI A, et al. Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner[C]//2017 IEEE International Conference on Computational Photography (ICCP). Stanford, CA, USA. IEEE, 2017: 1-12.
[45] [45] YE J T, HUANG X, LI Z P, et al. Compressed sensing for active non-line-of-sight imaging[J]. Optics Express, 2021, 29(2): 1749-1763.
[46] [46] LIU X T, WANG J Y, LI Z P, et al. Non-line-of-sight reconstruction with signal-object collaborative regularization[J]. Light, Science & Applications, 2021, 10(1): 198.
[47] [47] HEIDE F, O’TOOLE M, ZANG K, et al. Non-line-of-sight imaging with partial occluders and surface normals[J]. ACM Transactions on Graphics, 38(3): 22.
[48] [48] ISERINGHAUSEN J, HULLIN M B. Non-line-of-sight reconstruction using efficient transient rendering[J]. ACM Transactions on Graphics, 39(1): 8.
[49] [49] XIN S M, NOUSIAS S, KUTULAKOS K N, et al. A theory of Fermat paths for non-line-of-sight shape reconstruction[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 6793-6802.
[50] [50] O’TOOLE M, LINDELL D B, WETZSTEIN G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 2018, 555(7696): 338-341.
[51] [51] LINDELL D B, WETZSTEIN G. Three-dimensional imaging through scattering media based on confocal diffuse tomography[J]. Nature Communications, 2020, 11(1): 4517.
[52] [52] O′TOOLE M, LINDELL D B, WETZSTEIN G. Real-time non-line-of-sight imaging[C]//ACM SIGGRAPH 2018 Emerging Technologies. Vancouver British Columbia Canada. ACM, 2018: 1-2.
[53] [53] ISOGAWA M, CHAN D, YUAN Y, et al. Efficient non-line-of-sight imaging from transient sinograms[EB/OL]. [2020-08-06]. http://arxiv.org/abs/2008.02787.
[54] [54] YOUNG S I, LINDELL D B, GIROD B, et al. Non-line-of-sight surface reconstruction using the directional light-cone transform[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 1404-1413.
[55] [55] KLEIN J, PETERS C, MARTN J, et al. Tracking objects outside the line of sight using 2D intensity images[J]. Scientific Reports, 2016, 6: 32491.
[56] [56] TSAI C Y, KUTULAKOS K N, NARASIMHAN S G, et al. The geometry of first-returning photons for non-line-of-sight imaging[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA. IEEE, 2017: 2336-2344.
[57] [57] TSAI C Y, SANKARANARAYANAN A C, GKIOULEKAS I. Beyond volumetric albedo—a surface optimization framework for non-line-of-sight imaging[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 1545-1555.
[58] [58] CARAMAZZA P, BOCCOLINI A, BUSCHEK D, et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 2018, 8(1): 11945.
[59] [59] TANCIK M, SWEDISH T, SATAT G, et al. Data-driven non-line-of-sight imaging with A traditional camera[C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP). Orlando, Florida. Washington, D.C.: OSA, 2018, 1-6.
[60] [60] CHEN W Z, DANEAU S, BROSSEAU C, et al. Steady-state non-line-of-sight imaging[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, 2019: 6783-6792.
[61] [61] CHEN W Z, WEI F Y, KUTULAKOS K N, et al. Learned feature embeddings for non-line-of-sight imaging and recognition[J]. ACM Transactions on Graphics, 39(6): 230.
[62] [62] GRAU CHOPITE J, HULLIN M B, WAND M, et al. Deep non-line-of-sight reconstruction[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 957-966.
[63] [63] ISOGAWA M, YUAN Y, O’TOOLE M, et al. Optical non-line-of-sight physics-based 3D human pose estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 7011-7020.
[64] [64] SCHEINER N, KRAUS F, WEI F Y, et al. Seeing around street corners: Non-line-of-sight detection and tracking In-the-wild using Doppler radar[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 2065-2074.
[65] [65] ZHU D Y, CAI W S. Fast non-line-of-sight imaging with two-step deep remapping[EB/OL].[2021-01-26]. http://arxiv.org/abs/2101.10492.
[66] [66] SHEN S Y, WANG Z, LIU P, et al. Non-line-of-sight imaging via neural transient fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2257-2268.
[67] [67] METZLER C A, LINDELL D B, WETZSTEIN G. Keyhole imaging: Non-line-of-sight imaging and tracking of moving objects along a single optical path[J]. IEEE Transactions on Computational Imaging, 2021, 7: 1-12.
[68] [68] TANCIK M, SATAT G, RASKAR R. “Flash photography for data-driven hidden scene recovery,” CoRR, vol. abs/1810.11710, 2018.
[69] [69] MUSARRA G, CARAMAZZA P, TURPIN A, et al. Detection, identification, and tracking of objects hidden from view with neural networks[C]//Advanced Photon Counting Techniques XIII. Baltimore, USA. SPIE, 2019.
[70] [70] LEI X, HE L Y, TAN Y X, et al. Direct object recognition without line-of-sight using optical coherence[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2019: 11729-11738.
Get Citation
Copy Citation Text
Wang Xuefeng, Chen Xingsu. Analysis Research and Prospect of 3D Image Reconstruction Technology in Non-Line-of-Sight Imaging[J]. APPLIED LASER, 2024, 44(4): 212
Category:
Received: Aug. 25, 2023
Accepted: Dec. 13, 2024
Published Online: Dec. 13, 2024
The Author Email: Xingsu Chen (chenxs1981@126.com)