Laser & Optoelectronics Progress, Volume. 61, Issue 23, 2312002(2024)

Near-Surface Defect Detection Using Convolutional Neural Network and Laser Ultrasound Testing

Mingze Guo, Xingyuan Zhang*, and Zhenyue Jin
Author Affiliations
  • School of Air Transport, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    References(27)

    [3] Li H, Zhang Q, Qin X R et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 37, 124-131(2018).

    [10] Yan Y X, Chen Y X, Jia P F et al. Numerical simulation of ultrasonic waves generated by laser in plate[J]. Applied Laser, 40, 169-175(2020).

    [11] Jia Y B, Guo H L, Zheng B et al. Research on laser ultrasonic temperature measurement under different characteristics[J]. Laser & Infrared, 53, 362-369(2023).

    [12] Liu S, Gu J J, Wang Y et al. Design of BP neural network defect recognition method based on ultrasound detection[J]. Pressure Vessel Technology, 36, 62-66, 49(2019).

    [15] Dai Y. Numerical simulation of surface defect for metal materials based on the laser ultrasonic waves[D](2011).

    [24] Yin X H, Chen H C, Zhang H. Quantitative detection of multi‑component rubber additives based on terahertz spectral data fusion[J]. Chinese Journal of Lasers, 51, 0514001(2024).

    [27] Glantz S A, Slinker B K[M]. Primer of applied regression and analysis of variance(1990).

    Tools

    Get Citation

    Copy Citation Text

    Mingze Guo, Xingyuan Zhang, Zhenyue Jin. Near-Surface Defect Detection Using Convolutional Neural Network and Laser Ultrasound Testing[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2312002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Instrumentation, Measurement and Metrology

    Received: Jan. 9, 2024

    Accepted: Mar. 29, 2024

    Published Online: Nov. 19, 2024

    The Author Email: Xingyuan Zhang (zxy_sues@163.com)

    DOI:10.3788/LOP240477

    CSTR:32186.14.LOP240477

    Topics