PhotoniX, Volume. 3, Issue 1, 19(2022)
From compressive sampling to compressive tasking: retrieving semantics in compressed domain with low bandwidth
[2] [2] Altmann Y, McLaughlin S, Padgett MJ, Goyal VK, Hero AO, Faccio D. Quantum-inspired computational imaging. Science. 2018;361(6403):eaat2298. .
[9] [9] Antipa N, Oare P, Bostan E, Ng R, Waller L. Video from stills: lensless imaging with rolling shutter. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE; 2019. p. 1-8.
[16] [16] Okawara T, Yoshida M, Nagahara H, Yagi Y. Action recognition from a single coded image. In: 2020 IEEE International Conference on Computational Photography (ICCP). IEEE; 2020. p. 1-11.
[17] [17] Wu Y, Boominathan V, Chen H, Sankaranarayanan A, Veeraraghavan A. PhaseCam3D — learning phase masks for passive single view depth estimation. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE; 2019. p. 1-12.
[22] [22] Jiao L, Wang D, Bai Y, Chen P, Liu F. Deep learning in visual tracking: a review. IEEE Trans Neural Netw Learn Syst. 2021;1(1):1–20.
[29] [29] Li S, Deng W. Deep facial expression recognition: a survey. IEEE Trans Affect Comput. 2020;1(1):1–10.
[30] [30] Pawar PG, Devendran V. Scene understanding: a survey to see the world at a single glance. In: 2019 2nd International Conference on Intelligent Communication and Computational Techniques (ICCT). IEEE; 2019. p. 182-6.
[31] [31] Chen S, Yao T, Jiang YG. Deep learning for video captioning: a review. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). International Joint Conferences on Artificial Intelligence Organization; 2019. p. 6283-90.
[33] [33] Hitomi Y, Gu J, Gupta M, Mitsunaga T, Nayar SK. Video from a single coded exposure photograph using a learned over-complete dictionary. In: 2011 International Conference on Computer Vision (ICCV). IEEE; 2011. p. 287-94.
[38] [38] Reddy D, Veeraraghavan A, Chellappa R. P2C2: programmable pixel compressive camera for high speed imaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2011. p. 329-36.
[39] [39] Shedligeri P, S A, Mitra K. A unified framework for compressive video recovery from coded exposure techniques. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE; 2021. p. 1600-9.
[41] [41] Yuan X, Llull P, Liao X, Yang J, Brady DJ, Sapiro G, et al. Low-cost compressive sensing for color video and depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2014. p. 3318-25.
[43] [43] Wei M, Sarhangnejad N, Xia Z, Gusev N, Katic N, Genov R, et al. Coded two-bucket cameras for computer vision. In: European Conference on Computer Vision (ECCV). Springer; 2018. p. 54-71.
[46] [46] Yuan X. Generalized alternating projection based total variation minimization for compressive sensing. In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE; 2016. p. 2539-43.
[47] [47] Yuan X, Liu Y, Suo J, Dai Q. Plug-and-play algorithms for large-scale snapshot compressive imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2020. p. 1444-54.
[49] [49] Jalali S, Yuan X, Compressive imaging via one-shot measurements. In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE; 2018. p. 416–20.
[51] [51] Cheng Z, Lu R, Wang Z, Zhang H, Chen B, Meng Z, et al. BIRNAT: bidirectional recurrent neural networks with adversarial training for video snapshot compressive imaging. In: European Conference on Computer Vision (ECCV). Springer; 2020. p. 258-75.
[53] [53] Ma J, Liu XY, Shou Z, Yuan X. Deep tensor ADMM-Net for snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2019. p. 10222-31.
[54] [54] Wang Z, Zhang H, Cheng Z, Chen B, Yuan X. MetaSCI: scalable and adaptive reconstruction for video compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2021. p. 2083-92.
[55] [55] Wu Z, Zhang J, Mou C. Dense deep unfolding network with 3D-CNN prior for snapshot compressive imaging. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE; 2021. p. 4892-901.
[58] [58] Cheng Z, Chen B, Liu G, Zhang H, Lu R, Wang Z, et al. Memory-efficient network for large-scale video compressive sensing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2021. p. 16246-55.
[60] [60] Liao X, Li H, Carin L. Generalized alternating projection for weighted-\(\ell _{2,1}\) minimization with applications to model-based compressive sensing. SIAM J Imaging Sci. 2014;7(2):797–823.
[61] [61] Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn. 2010;3(1):1–122.
[62] [62] Bethi YRT, Narayanan S, Rangan V, Chakraborty A, Thakur CS. Real-time object detection and localization in compressive sensed video. In: 2021 IEEE International Conference on Image Processing (ICIP). IEEE; 2021. p. 1489-93.
[63] [63] Kwan C, Chou B, Yang J, Rangamani A, Tran T, Zhang J, et al. Target tracking and classification using compressive measurements of MWIR and LWIR coded aperture cameras. J Signal Inf Process. 2019;10(03):73–95.
[64] [64] Lu S, Yuan X, Shi W, Edge compression: an integrated framework for compressive imaging processing on CAVs. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE; 2020. p. 125–38.
[69] [69] Yuan X, Yang J, Llull P, Liao X, Sapiro G, Brady DJ, et al. Adaptive temporal compressive sensing for video. In: 2013 IEEE International Conference on Image Processing (ICIP). IEEE; 2013. p. 14-8.
[71] [71] Zheng S, Yang X, Yuan X. Two-stage is enough: a concise deep unfolding reconstruction network for flexible video compressive sensing. arXiv preprint arXiv:2201.05810. 2022;1(1):1-10.
[72] [72] Gomez AN, Ren M, Urtasun R, Grosse RB. The reversible residual network: backpropagation without storing activations. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS). vol. 30. Curran Associates, Inc.; 2017. p. 1-10.
[74] [74] Zhou X, Koltun V, Krähenbühl P. Tracking objects as points. In: European Conference on Computer Vision (ECCV). Springer; 2020. p. 474-90.
[75] [75] Caesar H, Bankiti V, Lang AH, Vora S, Liong VE, Xu Q, et al. nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 2020. p. 11618-28.
[77] [77] Zhao ZQ, Zheng P, Xu St, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019;30(11):3212-32.
Get Citation
Copy Citation Text
Zhihong Zhang, Bo Zhang, Xin Yuan, Siming Zheng, Xiongfei Su, Jinli Suo, David J. Brady, Qionghai Dai. From compressive sampling to compressive tasking: retrieving semantics in compressed domain with low bandwidth[J]. PhotoniX, 2022, 3(1): 19
Category: Research Articles
Received: Jun. 13, 2022
Accepted: Aug. 20, 2022
Published Online: Jul. 10, 2023
The Author Email: Jinli Suo (jlsuo@tsinghua.edu.cn), Qionghai Dai (qhdai@tsinghua.edu.cn)