Acta Optica Sinica, Volume. 42, Issue 3, 0327001(2022)
Quantum Information Masking
[1] Bennett C H. DiVincenzo D P. Quantum information and computation[J]. Nature, 404, 247-255(2000).
[2] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895(1993).
[3] Bouwmeester D, Pan J W, Mattle K et al. Experimental quantum teleportation[J]. Nature, 390, 575-579(1997).
[4] Hu X M, Zhang C, Liu B H et al. Experimental high-dimensional quantum teleportation[J]. Physical Review Letters, 125, 230501(2020).
[5] Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 69, 2881(1992).
[6] [6] Shor PW. Algorithms for quantum computation: discrete logarithms and factoring[C]∥Proceedings 35th Annual Symposium on Foundations of Computer Science, November 20-22, Santa Fe, NM, USA. New York: IEEE Press, 1994: 124- 134.
[7] Aaronson S, Arkhipov A. The computational complexity of linear optics[C]∥Proceedings of the 43rd annual ACM symposium on Theory of computing - STOC '11, June 6-8, 2011. San Jose, California, USA., 333-342(2011).
[8] Martín-López E, Laing A, Lawson T et al. Experimental realization of Shor's quantum factoring algorithm using qubit recycling[J]. Nature Photonics, 6, 773-776(2012).
[9] Arute F, Arya K, Babbush R et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 574, 505-510(2019).
[10] Zhong H S, Wang H, Deng Y H et al. Quantum computational advantage using photons[J]. Science, 370, 1460-1463(2020).
[11] Arrazola J M, Bergholm V, Brádler K et al. Quantum circuits with many photons on a programmable nanophotonic chip[J]. Nature, 591, 54-60(2021).
[12] Schrödinger E. Die gegenwärtige Situation in der Quantenmechanik[J]. Naturwissenschaften, 23, 807-812(1935).
[13] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 47, 777(1935).
[14] Modi K, Pati A K. Sen(De) A, et al. Masking quantum information is impossible[J]. Physical Review Letters, 120, 230501(2018).
[15] Wootters W K, Zurek W H. A single quantum cannot be cloned[J]. Nature, 299, 802-803(1982).
[16] Barnum H, Caves C M, Fuchs C A et al. Noncommuting mixed states cannot be broadcast[J]. Physical Review Letters, 76, 2818(1996).
[17] Pati A K, Braunstein S L. Impossibility of deleting an unknown quantum state[J]. Nature, 404, 164-165(2000).
[18] Braunstein S L, Pati A K. Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox[J]. Physical Review Letters, 98, 080502(2007).
[19] Schrödinger E. An undulatory theory of the mechanics of atoms and molecules[J]. Physical Review, 28, 1049(1926).
[20] Lie S H, Jeong H. Randomness cost of masking quantum information and the information conservation law[J]. Physical Review A, 101, 052322(2020).
[21] Hayden P, Preskill J. Black holes as mirrors: quantum information in random subsystems[J]. Journal of High Energy Physics, 2007, 120(2007).
[22] Sekino Y, Susskind L. Fast scramblers[J]. Journal of High Energy Physics, 2008, 065(2008).
[23] Lie S H, Kwon H, Kim M S et al. Quantum one-time tables for unconditionally secure qubit-commitment[J]. Quantum, 5, 405(2021).
[24] Liang X B, Li B, Fei S M. Complete characterization of qubit masking[J]. Physical Review A, 100, 030304(2019).
[25] Liu Z H, Liang X B, Sun K et al. Photonic implementation of quantum information masking[J]. Physical Review Letters, 126, 170505(2021).
[26] Zhang R Q, Hou Z B, Li Z H et al. Experimental masking of real quantum states[J]. Physical Review Applied, 16, 024052(2021).
[27] Du Y X, Guo Z H, Cao H X et al. Masking quantum information encoded in pure and mixed states[J]. International Journal of Theoretical Physics, 60, 2380-2399(2021).
[28] Shannon C E. Communication theory of secrecy systems[J]. Bell System Technical Journal, 28, 656-715(1949).
[29] Kimura G. The Bloch vector for N-level systems[J]. Physics Letters A, 314, 339-349(2003).
[30] Ding F, Hu X Y. Masking quantum information on hyperdisks[J]. Physical Review A, 102, 042404(2020).
[31] Shang W M, Zhang F L. -03-04)[2021-08-01]. https:∥arxiv., org/abs/2103, 03126(2021).
[32] Nielsen M A, Chuang I L[M]. Quantum computation and quantum information(2000).
[33] García-Pelayo R. Distribution of distance in the spheroid[J]. Journal of Physics A: Mathematical and General, 38, 3475-3482(2005).
[34] Hardy L, Wootters W K. Limited holism and real-vector-space quantum theory[J]. Foundations of Physics, 42, 454-473(2012).
[35] Wu K D, Kondra T V, Rana S et al. Operational resource theory of imaginarity[J]. Physical Review Letters, 126, 090401(2021).
[36] Zhu H J. Hiding and masking quantum information in complex and real quantum mechanics[J]. Physical Review Research, 3, 033176(2021).
[37] Liang X B, Li B, Fei S M et al. Impossibility of masking a set of quantum states of nonzero measure[J]. Physical Review A, 101, 042321(2020).
[38] Li M S, Wang Y L. Masking quantum information in multipartite scenario[J]. Physical Review A, 98, 062306(2018).
[39] Han K Y, Guo Z H, Cao H X et al. Quantum multipartite maskers vs. quantum error-correcting codes[J]. EPL (Europhysics Letters), 131, 30005(2020).
[40] Shang W M, Zhang F L, Zhou J et al. Qubit masking in multipartite qubit system[J]. Modern Physics Letters A, 36, 2150156(2021).
[41] Dey A. Orthogonal Latin Squares and the Falsity of Euler’s conjecture[M]. ∥Bhatia R, Rajan C S, Singh A I. Connected at Infinity II. Texts and readings in mathematics. Gurgaon: Hindustan Book Agency, 67, 1-17(2013).
[42] Preskill J. Quantum Computing in the NISQ era and beyond[J]. Quantum, 2, 79(2018).
[43] von Keyserlingk C, Rakovszky T, Pollmann F et al. Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws[J]. Physical Review X, 8, 021013(2018).
[44] Anderson P W. Absence of diffusion in certain random lattices[J]. Physical Review, 109, 1492(1958).
[45] Abanin D A, Altman E, Bloch I et al. Colloquium: many-body localization, thermalization, and entanglement[J]. Reviews of Modern Physics, 91, 021001(2019).
[46] Yao N Y, Potter A C, Potirniche I D et al. Discrete time crystals: rigidity, criticality, and realizations[J]. Physical Review Letters, 118, 030401(2017).
[47] Heyl M. Dynamical quantum phase transitions: a review[J]. Reports on Progress in Physics. Physical Society (Great Britain), 81, 054001(2018).
[48] Mi X, Ippoliti M, Quintana C et al. -07-28)[2021-08-01]. https:∥arxiv., org/abs/2107, 13571(2021).
[49] Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states[J]. Physical Review Letters, 80, 4999(1998).
[50] Pati A K. Quantum superposition of multiple clones and the novel cloning machine[J]. Physical Review Letters, 83, 2849(1999).
[51] Li B, Jiang S H, Liang X B et al. Deterministic versus probabilistic quantum information masking[J]. Physical Review A, 99, 052343(2019).
[52] Li M S, Modi K. Probabilistic and approximate masking of quantum information[J]. Physical Review A, 102, 022418(2020).
[53] Flamini F, Spagnolo N, Sciarrino F. Photonic quantum information processing: a review[J]. Reports on Progress in Physics, 82, 016001(2019).
[54] O’Brien J L, Pryde G J, White A G et al. Demonstration of an all-optical quantum controlled-NOT gate[J]. Nature, 426, 264-267(2003).
[55] Okamoto R, Hofmann H F, Takeuchi S et al. Demonstration of an optical quantum controlled-NOT gate without path interference[J]. Physical Review Letters, 95, 210506(2005).
[56] Kiesel N, Schmid C, Weber U et al. Linear optics controlled-phase gate made simple[J]. Physical Review Letters, 95, 210505(2005).
[57] Langford N K, Weinhold T J, Prevedel R et al. Demonstration of a simple entangling optical gate and its use in bell-state analysis[J]. Physical Review Letters, 95, 210504(2005).
[58] Englert B G, Kurtsiefer C, Weinfurter H. Universal unitary gate for single-photon two-qubit states[J]. Physical Review A, 63, 032303(2001).
[59] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference[J]. Physical Review Letters, 59, 2044(1987).
[60] Dirac P M[M]. The principles of quantum mechanics(1930).
[61] Glauber R J. Dirac’s famous dictum on interference: one photon or two?[J]. American Journal of Physics, 63, 12(1995).
[62] Proietti M, Pickston A, Graffitti F et al. 5(9): eaaw9832(2019).
[63] Wang K, Xu Q, Zhu S N et al. Quantum wave-particle superposition in a delayed-choice experiment[J]. Nature Photonics, 13, 872-877(2019).
[64] Tschernig K, Müller C, Smoor M et al. Direct observation of the particle exchange phase of photons[J]. Nature Photonics, 15, 671-675(2021).
[65] Browne D E, Rudolph T. Resource-efficient linear optical quantum computation[J]. Physical Review Letters, 95, 010501(2005).
[66] Lo Franco R, Compagno G. Indistinguishability of elementary systems as a resource for quantum information processing[J]. Physical Review Letters, 120, 240403(2018).
[67] Sun K, Wang Y, Liu Z H et al. Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons[J]. Optics Letters, 45, 6410-6413(2020).
[68] Zhou X Q, Ralph T C, Kalasuwan P et al. Adding control to arbitrary unknown quantum operations[J]. Nature Communications, 2, 413(2011).
[69] Ru S H, Wang Y L, An M et al. Realization of a deterministic quantum Toffoli gate with a single photon[J]. Physical Review A, 103, 022606(2021).
[70] Wang F R, Ru S H, Wang Y L et al. Experimental demonstration of a quantum controlled-SWAP gate with multiple degrees of freedom of a single photon[J]. Quantum Science and Technology, 6, 035005(2021).
[71] Bodiya T P, Duan L M. Scalable generation of graph-state entanglement through realistic linear optics[J]. Physical Review Letters, 97, 143601(2006).
[72] Lu C Y, Browne D E, Yang T et al. Demonstration of a compiled version of Shor’s quantum factoring algorithm using photonic qubits[J]. Physical Review Letters, 99, 250504(2007).
[73] Lanyon B P, Weinhold T J, Langford N K et al. Experimental demonstration of a compiled version of Shor’s algorithm with quantum entanglement[J]. Physical Review Letters, 99, 250505(2007).
[74] Kim Y, Kim Y S, Lee S Y et al. Direct quantum process tomography via measuring sequential weak values of incompatible observables[J]. Nature Communications, 9, 1-6(2018).
[75] Liu Z H, Zhou J, Meng H X et al. Experimental test of the Greenberger-Horne-Zeilinger-type paradoxes in and beyond graph states[J]. Npj Quantum Information, 7, 1-8(2021).
[76] Zhang A N, Zhan H, Liao J J et al. Quantum verification of NP problems with single photons and linear optics[J]. Light: Science & Applications, 10, 1-11(2021).
[77] Berhane A M, Jeong K Y, Bodrog Z et al. Bright room-temperature single-photon emission from defects in gallium nitride[J]. Advanced Materials, 29, 1605092(2017).
[78] Wang J F, Zhou Y, Wang Z Y et al. Bright room temperature single photon source at telecom range in cubic silicon carbide[J]. Nature Communications, 9, 4106(2018).
[79] Li Q, Zhou J Y, Liu Z H et al. Stable single photon sources in the near C-band range above 400 K[J]. Journal of Semiconductors, 40, 072902(2019).
[80] Hou Z B, Tang J F, Shang J W et al. Deterministic realization of collective measurements via photonic quantum walks[J]. Nature Communications, 9, 1-7(2018).
[81] Wu K D, Bäumer E, Tang J F et al. Minimizing backaction through entangled measurements[J]. Physical Review Letters, 125, 210401(2020).
[82] Hou Z B, Jin Y, Chen H Z et al. “super-Heisenberg” and Heisenberg scalings achieved simultaneously in the estimation of a rotating field[J]. Physical Review Letters, 126, 070503(2021).
[83] Tang H, di Franco C, Shi Z Y et al. Experimental quantum fast hitting on hexagonal graphs[J]. Nature Photonics, 12, 754-758(2018).
[84] Xu X Y, Huang X L, Li Z M et al. 6(5): eaay5853(2020).
[85] Xu X Y, Wang Q Q, Pan W W et al. Measuring the winding number in a large-scale chiral quantum walk[J]. Physical Review Letters, 120, 260501(2018).
[86] Xu X Y, Wang Q Q, Heyl M et al. Measuring a dynamical topological order parameter in quantum walks[J]. Light: Science & Applications, 9, 1-11(2020).
[87] Xiao L, Qu D K, Wang K K et al. Non-Hermitian Kibble-Zurek mechanism with tunable complexity in single-photon interferometry[J]. PRX Quantum, 2, 020313(2021).
[88] Wang K K, Xiao L, Budich J C et al. Simulating exceptional non-Hermitian metals with single-photon interferometry[J]. Physical Review Letters, 127, 026404(2021).
[89] Kurzyński P, Wójcik A. Quantum walk as a generalized measuring device[J]. Physical Review Letters, 110, 200404(2013).
[90] Vitelli C, Spagnolo N, Aparo L et al. Joining the quantum state of two photons into one[J]. Nature Photonics, 7, 521-526(2013).
[91] Zhu H J, Hayashi M. Efficient verification of pure quantum states in the adversarial scenario[J]. Physical Review Letters, 123, 260504(2019).
[92] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 80, 2245(1998).
[93] Ulrich R, Rashleigh S C, Eickhoff W. Bending-induced birefringence in single-mode fibers[J]. Optics Letters, 5, 273-275(1980).
[94] Hahn E L. Spin echoes[J]. Physical Review, 80, 580(1950).
[95] Xu J S, Yung M H, Xu X Y et al. Robust bidirectional links for photonic quantum networks[J]. Science Advances, 2, e1500672(2016).
[96] Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting[J]. Physical Review A, 59, 162(1999).
[97] Hillery M, Bužek V, Berthiaume A. Quantum secret sharing[J]. Physical Review A, 59, 1829(1999).
[98] Cleve R, Gottesman D, Lo H K. How to share a quantum secret[J]. Physical Review Letters, 83, 648(1999).
[99] Xiao L, Long G L, Deng F G et al. Efficient multiparty quantum-secret-sharing schemes[J]. Physical Review A, 69, 052307(2004).
[100] Tittel W, Zbinden H, Gisin N. Experimental demonstration of quantum secret sharing[J]. Physical Review A, 63, 042301(2001).
[101] Chen Y A, Zhang A N, Zhao Z et al. Experimental quantum secret sharing and third-man quantum cryptography[J]. Physical Review Letters, 95, 200502(2005).
[102] Gaertner S, Kurtsiefer C, Bourennane M et al. Experimental demonstration of four-party quantum secret sharing[J]. Physical Review Letters, 98, 020503(2007).
[103] Bell B A, Markham D. Herrera-Martí D A, et al. Experimental demonstration of graph-state quantum secret sharing[J]. Nature Communications, 5, 1-12(2014).
[104] Blum M. Coin flipping by telephone. CRYPTO, 1981, 11-15(1981).
[105] Canetti R, Fischlin M. Universally composable commitments[M]. ∥Kilian J. Advances in cryptology—CRYPTO 2001. Lecture notes in computer science. Heidelberg: Springer, 2139, 19-40(2001).
[106] Lo H K, Chau H F. Is quantum bit commitment really possible?[J]. Physical Review Letters, 78, 3410(1997).
[107] Mayers D. Unconditionally secure quantum bit commitment is impossible[J]. Physical Review Letters, 78, 3414(1997).
[108] Adlam E, Kent A. Device-independent relativistic quantum bit commitment[J]. Physical Review A, 92, 022315(2015).
[109] Deng F G, Long G L. Secure direct communication with a quantum one-time pad[J]. Physical Review A, 69, 052319(2004).
[110] Gu B, Zhang C Y, Cheng G S et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel[J]. Science China Physics, Mechanics and Astronomy, 54, 942-947(2011).
[111] Schmid D, Rosset D, Buscemi F. The type-independent resource theory of local operations and shared randomness[J]. Quantum, 4, 262(2020).
[112] Shi F, Li M S, Chen L et al. k-uniform quantum information masking[J]. Physical Review A, 104, 032601(2021).
[113] Hu M Y, Chen L. Genuine entanglement. -02-01)[2021-08-01]. https:∥arxiv., org/abs/2102, 00673(2021).
[114] Lidar D A, Brun T A, Brun T[M]. Quantum error correction(2013).
[115] Grimsmo A L, Puri S. Quantum error correction with the Gottesman-Kitaev-Preskill code[J]. PRX Quantum, 2, 020101(2021).
[116] Samal J R, Pati A K, Kumar A. Experimental test of the quantum no-hiding theorem[J]. Physical Review Letters, 106, 080401(2011).
[117] Misner CW, Thorne KS, Wheeler JA. Gravitation. Macmillan(1973).
[118] Hawking S W. Black hole explosions?[J]. Nature, 248, 30-31(1974).
[119] Page D N. Is black-hole evaporation predictable?[J]. Physical Review Letters, 44, 301(1980).
[120] Hooft G. On the quantum structure of a black hole[J]. Nuclear Physics B, 256, 727-745(1985).
[121] Kalara S, Nanopoulos D V. Black holes, membranes, wormholes and superstrings[M]. Singapore: World Scientific(1993).
[122] Fiola T M, Preskill J, Strominger A et al. Black hole thermodynamics and information loss in two dimensions[J]. Physical Review D, 50, 3987(1994).
[123] Yuan X, Zhou H Y, Cao Z et al. Intrinsic randomness as a measure of quantum coherence[J]. Physical Review A, 92, 022124(2015).
[124] Yamaguchi K, Watamura N, Hotta M. Quantum information capsule and information delocalization by entanglement in multiple-qubit systems[J]. Physics Letters A, 383, 1255-1259(2019).
[125] Hotta M, Yamaguchi K. Strong chaos of fast scrambling yields order: emergence of decoupled quantum information capsules[J]. Physics Letters A, 384, 126078(2020).
[126] Liang X B, Li B, Huang L et al. Optimal approximations of available states and a triple uncertainty relation[J]. Physical Review A, 101, 062106(2020).
[127] Wang D, Ming F, Hu M L et al. Quantum-memory-assisted entropic uncertainty relations[J]. Annalen Der Physik, 531, 1900124(2019).
[128] Mohan B, Srivastava C et al. -05-05)[2021-08-01]. https:∥arxiv., org/abs/2105, 03250(2021).
[129] Prevedel R, Hamel D R, Colbeck R et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement[J]. Nature Physics, 7, 757-761(2011).
[130] Chaves R, Carvacho G, Agresti I et al. Quantum violation of an instrumental test[J]. Nature Physics, 14, 291-296(2018).
Get Citation
Copy Citation Text
Zhenghao Liu, Jinshi Xu, Chuanfeng Li. Quantum Information Masking[J]. Acta Optica Sinica, 2022, 42(3): 0327001
Category: Quantum Optics
Received: Sep. 1, 2021
Accepted: Oct. 25, 2021
Published Online: Jan. 24, 2022
The Author Email: Xu Jinshi (jsxu@ustc.edu.cn), Li Chuanfeng (cfli@ustc.edu.cn)