Chinese Optics Letters, Volume. 19, Issue 10, 102602(2021)
Donut-like photonic nanojet with reverse energy flow
[1] Z. Chen, A. Taflove, V. Backman. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express, 12, 1214(2004).
[2] Z. B. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. C. Chen, M. H. Hong. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun., 2, 218(2011).
[3] A. Darafsheh, C. Guardiola, A. Palovcak, J. C. Finlay, A. Carabe. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett., 40, 5(2015).
[4] G. Huszka, H. Yang, M. A. M. Gijs. Microsphere-based super-resolution scanning optical microscope. Opt. Express, 25, 15079(2017).
[5] D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Opt. Express, 16, 15297(2008).
[6] P. K. Upputuri, M. Pramanik. Microsphere-aided optical microscopy and its applications for super-resolution imaging. Opt. Commun., 404, 32(2017).
[7] F. Wang, S. Yang, H. Ma, P. Shen, N. Wei, M. Wang, Y. Xia, Y. Deng, Y.-H. Ye. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion. Appl. Phys. Lett., 112, 023101(2018).
[8] E. McLeod, C. B. Arnold. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nat. Nanotech., 3, 413(2008).
[9] A. Jacassi, F. Tantussi, M. Dipalo, C. Biagini, N. Maccaferri, A. Bozzola, F. De Angelis. Scanning probe photonic nanojet lithography. ACS Appl. Mater. Interfaces, 9, 32386(2017).
[10] Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, B. J. Li. Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet. Light: Sci. Appl., 5, e16176(2016).
[11] A. Shakhov, A. Astafiev, V. Nadtochenko. Microparticle manipulation using femtosecond photonic nanojet-assisted laser cavitation. Opt. Lett., 43, 1858(2018).
[12] Y. C. Li, H. B. Xin, X. S. Liu, Y. Zhang, H. X. Lei, B. J. Li. Trapping and detection of nanoparticles and cells using a parallel photonic nanojet array. ACS Nano, 10, 5800(2016).
[13] S. C. Kong, A. V. Sahakian, A. Taflove, V. Backman. Photonic nanojet-enabled optical data storage. Opt. Express, 16, 13713(2008).
[14] S. C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, V. Backman. Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets. Appl. Phys. Lett., 92, 211102(2008).
[15] A. Heifetz, S. Kong, A. V. Sahakian, A. Taflove, V. Backman. Photonic nanojets. J. Comput. Theoretical Nanos., 6, 1979(2009).
[16] B. S. Luk’yanchuk, R. Paniagua-Domínguez, I. Minin, O. Minin, Z. Wang. Refractive index less than two: photonic nanojets yesterday, today and tomorrow. Opt. Mater. Express, 7, 1820(2017).
[17] Y. C. Shen, L. H. V. Wang, J. T. Shen. Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Opt. Lett., 39, 4120(2014).
[18] G. Q. Gu, R. Zhou, Z. C. Chen, H. Y. Xu, G. X. Gai, Z. P. Gai, M. H. Hong. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. Opt. Lett., 40, 625(2015).
[19] B. F. Zhang, J. J. Hao, Z. Shen, H. Wu, K. Zhu, J. Xu, J. P. Ding. Ultralong photonic nanojet formed by dielectric microtoroid structure. Appl. Opt., 57, 8331(2018).
[20] L. Y. Yue, O. V. Minin, Z. B. Wang, J. N. Monks, A. S. Shalin, I. V. Minin. Photonic hook: a new curved light beam. Opt. Lett., 43, 771(2018).
[21] S. Zhou. Twin phonotic hooks generated from two coherent illuminations of a micro-cylinder. J. Opt., 22, 085602(2020).
[22] I. V. Minin, O. V. Minin, G. M. Katyba, N. V. Chernomyrdin, V. N. Kurlov, K. I. Zaytsev, L. Yue, Z. Wang, D. N. Christodoulides. Experimental observation of a photonic hook. Appl. Phys. Lett., 114, 031105(2019).
[23] H. Guo, Y. Han, X. Weng, Y. Zhao, G. Sui, Y. Wang, S. Zhuang. Near-field focusing of the dielectric microsphere with wavelength scale radius. Opt. Express, 21, 2434(2013).
[24] T. Zeng, J. Ding. Three-dimensional multiple optical cages formed by focusing double-ring shaped radially and azimuthally polarized beams. Chin. Opt. Lett., 16, 031405(2018).
[25] Z. Gu, X. Wang, J. Wang, F. Fan, S. Chang. Sidelobe suppression and axial resolution enhancement in 4pi microscopy with higher-order radially polarized Laguerre–Gaussian beams using subtractive imaging. Chin. Opt. Lett., 17, 121103(2019).
[26] J. Wang, X. Wang, M. Zeng. Broadband transverse displacement sensing of silicon hollow nanodisk under focused radial polarization illumination in the near-infrared region. Chin. Opt. Lett., 18, 063602(2020).
[27] V. V. Kotlyar, A. A. Kovalev, A. G. Nalamov. Energy density and energy flux in the focus of an optical vortex: reverse flux of light energy. Opt. Lett., 43, 2921(2018).
[28] V. V. Kotlyar, A. G. Nalimov, A. A. Kotlyar. Helical reverse flux of light of a focused optical vortex. J. Opt., 20, 095603(2018).
[29] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 253, 358(1959).
[30] M. Born, E. Wolf. Principles of Optics(1999).
[31] M. V. Berry. Optical currents. J. Opt. A, 11, 094001(2009).
Get Citation
Copy Citation Text
Hao Wang, Jingjing Hao, Baifu Zhang, Cheng Han, Chunguang Zhao, Zhe Shen, Ji Xu, Jianping Ding, "Donut-like photonic nanojet with reverse energy flow," Chin. Opt. Lett. 19, 102602 (2021)
Category: Physical Optics
Received: Feb. 3, 2021
Accepted: Mar. 18, 2021
Posted: Mar. 18, 2021
Published Online: Aug. 16, 2021
The Author Email: Baifu Zhang (zhangbf@njust.edu.cn), Jianping Ding (jpding@nju.edu.cn)