Optics and Precision Engineering, Volume. 32, Issue 16, 2504(2024)
High-precision adaptive fractional order sliding mode tracking control for piezoelectric platform
[1] [1] 姜世平. 基于两自由度压电驱动快反镜的星光跟踪控制[J]. 压电与声光, 2019, 41(6): 877-879.JIANGS P. Star tracking control system based on two-degree-of-freedom piezo-actuated fast steering mirror[J]. Piezoelectrics & Acoustooptics, 2019, 41(6): 877-879.(in Chinese)
[2] HABIBULLAH H, POTA H R, PETERSEN I R. A novel control approach for high-precision positioning of a piezoelectric tube scanner[J]. IEEE Transactions on Automation Science and Engineering, 14, 325-336(2017).
[3] RASAIENIA A, ASNAASHARI M, HEMMATI M. A robust controller design for piezoelectric positioning stage with Bouc-Wen hysteresis compensator[J]. Signal Processing and Renewable Energy, 3, 45-58(2019).
[4] [4] 徐子睿, 许素安, 富雅琼, 等. 基于Duhem前馈逆补偿的压电陶瓷迟滞非线性 自适应滑模控制[J]. 传感技术学报, 2019, 32(8): 1209-1214.XUZ R, XUS A, FUY Q, et al. Piezoelectric ceramic hysteresis nonlinear adaptive sliding mode control based on duhem feedforward inverse compensation[J]. Chinese Journal of Sensors and Actuators, 2019, 32(8): 1209-1214.(in Chinese)
[5] [5] 于志亮, 刘杨, 王岩, 等. 基于改进PI模型的压电陶瓷迟滞特性补偿控制[J]. 仪器仪表学报, 2017, 38(1): 129-135.YUZ L, LIUY, WANGY, et al. Hysteresis compensation and control of piezoelectric actuator based on an improved PI model[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 129-135.(in Chinese)
[6] STEFANSKI F, MINOROWICZ B, PERSSON J et al. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model[J]. Mechanical Systems and Signal Processing, 82, 412-431(2017).
[7] XU R, TIAN D P, WANG Z S. Adaptive tracking control for the piezoelectric actuated stage using the krasnosel’skii-pokrovskii operator[J]. Micromachines, 11, 537(2020).
[8] [8] 潘云凤, 潘海鹏, 赵新龙. 压电陶瓷执行器的动态迟滞非线性特性建模[J]. 传感器与微系统, 2019, 38(9): 38-42.PANY F, PANH P, ZHAOX L. Dynamic hysteresis nonlinearity characteristics modeling of piezoceramic actuator[J]. Transducer and Microsystem Technologies, 2019, 38(9): 38-42.(in Chinese)
[9] [9] 刘鑫, 李新阳, 杜睿. 压电陶瓷驱动器迟滞非线性建模及逆补偿控制[J]. 光电工程, 2019, 46(8): 180328.LIUX, LIX Y, DUR. Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators[J]. Opto-Electronic Engineering, 2019, 46(8): 180328.(in Chinese)
[10] [10] 王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程, 2018, 26(10): 2484-2492. doi: 10.3788/ope.20182610.2484WANGZ Y, JIAG X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Opt. Precision Eng., 2018, 26(10): 2484-2492.(in Chinese). doi: 10.3788/ope.20182610.2484
[11] [11] 王舟, 陈远晟, 王浩, 等. 压电陶瓷驱动器迟滞建模与自适应控制[J]. 压电与声光, 2020, 42(4): 523-528.WANGZ, CHENY S, WANGH, et al. Hysteresis modelling and adaptive control of piezoelectric actuators[J]. Piezoelectrics & Acoustooptics, 2020, 42(4): 523-528.(in Chinese)
[12] [12] 康升征, 吴洪涛, 杨小龙, 等. 压电微定位系统自适应鲁棒有限时间跟踪控制[J]. 农业机械学报, 2018, 49(8): 403-410.KANGS Z, WUH T, YANGX L, et al. Adaptive robust finite-time tracking control for piezoelectric micropositioning systems[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 403-410.(in Chinese)
[13] [13] 魏伟, 夏鹏飞, 左敏. 压电驱动纳米定位台的线性自抗扰控制[J]. 控制理论与应用, 2018, 35(11): 1577-1590.WEIW, XIAP F, ZUOM. Linear active disturbance rejection control of piezoelectric nanopositioning stage[J]. Control Theory & Applications, 2018, 35(11): 1577-1590.(in Chinese)
[14] XU R, ZHANG X Y, GUO H Y et al. Sliding mode tracking control with perturbation estimation for hysteresis nonlinearity of piezo-actuated stages[J]. IEEE Access, 6, 30617-30629(2018).
[15] [15] 陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J]. 光学 精密工程, 2023, 31(18): 2675-2686. doi: 10.37188/ope.20233118.2675CHENY Z, LAIL J, LIP Z, et al. Full leaf-spring type spatial large-stroke parallel flexure micro-positioning stage and trajectory control[J]. Opt. Precision Eng., 2023, 31(18): 2675-2686.(in Chinese). doi: 10.37188/ope.20233118.2675
[16] WANG Z S, XU R, WANG L N et al. Finite-time adaptive sliding mode control for high-precision tracking of piezo-actuated stages[J]. ISA Transactions, 129, 436-445(2022).
[17] XU R, TIAN D P, WANG Z S. Adaptive disturbance observer-based local fixed-time sliding mode control with an improved approach law for motion tracking of piezo-driven microscanning system[J]. IEEE Transactions on Industrial Electronics, 71, 12824-12834(2024).
[18] XU R, WANG Z S, ZHOU M L et al. A robust fractional-order sliding mode control technique for piezoelectric nanopositioning stages in trajectory-tracking applications[J]. Sensors and Actuators A: Physical, 363, 114711(2023).
[19] XU R, PAN W, WANG Z S et al. High-precision tracking control of a piezoelectric micro-nano platform using sliding mode control with the fractional-order operator[J]. International Journal of Precision Engineering and Manufacturing, 21, 2277-2286(2020).
[20] REN B B, ZHONG Q C, DAI J G. Asymptotic reference tracking and disturbance rejection of UDE-based robust control[J]. IEEE Transactions on Industrial Electronics, 64, 3166-3176(2017).
[21] XU Q S. Precision motion control of piezoelectric nanopositioning stage with chattering-free adaptive sliding mode control[J]. IEEE Transactions on Automation Science and Engineering, 14, 238-248(2017).
Get Citation
Copy Citation Text
Mingchao SUN, Jiaqi PENG, Yueming SONG. High-precision adaptive fractional order sliding mode tracking control for piezoelectric platform[J]. Optics and Precision Engineering, 2024, 32(16): 2504
Category:
Received: Apr. 26, 2024
Accepted: --
Published Online: Nov. 18, 2024
The Author Email: Yueming SONG (songym525@sina.com)