Chinese Journal of Lasers, Volume. 49, Issue 23, 2306002(2022)

Free-Space Optical Communication Atmospheric Turbulence Compensation Based on Multiple Input Multiple Output Mode Diversity Coherent Reception

Han Yin1,2、**, Yingxiong Song1,2, Yingchun Li1,2、*, Song Chen1,2, and Yetian Huang1,2
Author Affiliations
  • 1Key Laboratory of Special Optical Fiber and Optical Access Network, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • show less
    Figures & Tables(18)
    Schematic of atmospheric refractive index fluctuation
    Modeling schematic for few-mode fiber (FMF) collection of free space optical communication (FSO) beam
    Schematic of simulation system
    Offline processing steps based on LMS-MIMO algorithm
    LMS-MIMO adaptive equalizer structure diagram
    Constellation of X-polarization with one mode compensation when Cn2=3.51×10-14
    Constellation of Y-polarization with one mode compensation when Cn2=3.51×10-14
    Constellation of X-polarization with three modes compensation when Cn2=3.51×10-14
    Constellation of Y-polarization with three modes compensation when Cn2=3.51×10-14
    Constellation of X-polarization with one mode compensation when Cn2=2.6×10-13
    Constellation of Y-polarization with one mode compensation when Cn2=2.6×10-13
    Constellation of X-polarization with three modes compensation when Cn2=2.6×10-13
    Constellation of Y-polarization with three modes compensation when Cn2=2.6×10-13
    Relation diagram of optical signal-to-noise ratio (OSNR) and bit error rate (BER) when Cn2=2.1×10-16
    Relation diagram of OSNR and BER when Cn2=3.51×10-14
    Relation diagram of OSNR and BER when Cn2=2.6×10-13
    • Table 1. Parameters in simulation experiment

      View table

      Table 1. Parameters in simulation experiment

      ParameterValue
      Wavelength /nm1550
      Bit rate /(Gbit·s-1)100
      Sampling rate /GHz800
      Laser line width /kHz100
      Atmospheric channel length /km5
      Single/multimode fiber length /km1
      Launch waist /m0.02
      Receiver aperture diameter /m0.10
      Numerical aperture0.1339
      Core refractive index1.4485
      Value of fiber3.8
      Fiber core radius /μm7
      Supported modesLP01, LP11
      Fiber attenuation /(dB·km-1)0.19, 0.19
      Dispersion /[ps·(nm·km)-1]21.1, 20.7
      Differential group delay (DGD) /(ps·m-1)0, 2.1
      Dual polarization transmitter insertion loss of modulator /dB6
      Dual polarization receiver insertion loss /dB0
      Dual polarization receiver responsivity of photo-diode /(A·W-1)1
    • Table 2. Refractive index structure parameters of atmospheric turbulence in simulation experiment

      View table

      Table 2. Refractive index structure parameters of atmospheric turbulence in simulation experiment

      Turbulence conditionRefractive index structure constantCn2
      Weak turbulence2.1×10-16
      Medium turbulence3.51×10-14
      Strong turbulence2.6×10-13
    Tools

    Get Citation

    Copy Citation Text

    Han Yin, Yingxiong Song, Yingchun Li, Song Chen, Yetian Huang. Free-Space Optical Communication Atmospheric Turbulence Compensation Based on Multiple Input Multiple Output Mode Diversity Coherent Reception[J]. Chinese Journal of Lasers, 2022, 49(23): 2306002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: Jan. 20, 2022

    Accepted: Apr. 7, 2022

    Published Online: Nov. 2, 2022

    The Author Email: Yin Han (19721181yh@shu.edu.cn), Li Yingchun (liyingchun@shu.edu.cn)

    DOI:10.3788/CJL202249.2306002

    Topics