Journal of Applied Optics, Volume. 45, Issue 3, 616(2024)

Low-light pedestrian detection and tracking algorithm based on autoencoder structure and improved Bytetrack

Zelin REN, Lan PANG, Chao WANG, Jiaheng LI, and Fangyan ZHOU*
Author Affiliations
  • Xi'an Institute of Applied Optics, Xi'an 710065, China
  • show less
    References(22)

    [1] ZHU Wenbin, YUAN Jing, ZHU Wenhao et al. Sequence-enhancement-based human detection and posture recognition of mobile robots in low illumination scenes[J]. Robot, 44, 299-309(2022).

    [2] SHU Ziteng, ZHANG Zebin, SONG Yaozhe et al. Low-light image object detection based on improved YOLOv5 algorithm[J]. Laser & Optoelectronics Progress, 60, 77-84(2023).

    [3] LUO Y, CAO X, ZHANG J et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 81, 30685-30704(2022).

    [4] WANG K, LIU M Z. Object recognition at night scene based on DCGAN and faster R-CNN[J]. IEEE Access, 8, 193168-193182(2020).

    [5] ZHANG L, QI G J, WANG L et al. AET vs. AED: unsupervised representation learning by auto-encoding transformations rather than data[C], 2547-2555(2019).

    [7] CUI Z, QI G J, GU L et al. Multitask aet with orthogonal tangent regularity for dark object detection[C], 2553-2562(2021).

    [8] KARAIMER H C, BROWN M S. A software platform for manipulating the camera imaging pipeline[C], 873-888(2016).

    [9] BROOKS T, MILDENHALL B, XUE T et al. Unprocessing images for learned raw denoising[C], 11036-11045(2019).

    [11] ZHANG Y, SUN P, JIANG Y et al. Bytetrack: multi-object tracking by associating every detection box[C], 1-21(2022).

    [12] ZHOU K, YANG Y, CAVALLARO A et al. Omni-scale feature learning for person re-identification[C], 3702-3712(2019).

    [13] HE S, LUO H, WANG P et al. Transreid: transformer-based object re-identification[C], 15013-15022(2021).

    [14] DU Y, WAN J, ZHAO Y et al. Giaotracker: a comprehensive framework for mcmot with global information and optimizing strategies in visdrone 2021[C], 2809-2819(2021).

    [15] BEWLEY A, GE Z, OTT L et al. Simple online and realtime tracking[C], 3464-3468(2016).

    [16] MAGGIOLINO G, AHMAD A, CAO J et al. Deep oc-sort: multi-pedestrian tracking by adaptive re-identification[C], 3025-3029(2023).

    [18] DENDORFER P, OSEP A, MILAN A et al. Motchallenge: a benchmark for single-camera multiple target tracking[J]. International Journal of Computer Vision, 129, 845-881(2021).

    [19] GUO C, LI C, GUO J et al. Zero-reference deep curve estimation for low-light image enhancement[C], 1780-1789(2020).

    [20] ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C], 1632-1640(2019).

    [21] WU W, WENG J, ZHANG P et al. Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement[C], 5901-5910(2022).

    Tools

    Get Citation

    Copy Citation Text

    Zelin REN, Lan PANG, Chao WANG, Jiaheng LI, Fangyan ZHOU. Low-light pedestrian detection and tracking algorithm based on autoencoder structure and improved Bytetrack[J]. Journal of Applied Optics, 2024, 45(3): 616

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Oct. 27, 2023

    Accepted: --

    Published Online: Jun. 2, 2024

    The Author Email: Fangyan ZHOU (周方琰(1998—))

    DOI:10.5768/JAO202445.0302001

    Topics