Acta Photonica Sinica, Volume. 54, Issue 5, 0501001(2025)
Recognizing OAM Signals under Atmospheric Turbulence Using Convolutional Neural Networks
[1] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[2] WANG J, YANG J Y, FAZAL I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).
[3] LI J, ZHANG M, WANG D et al. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication[J]. Optics Express, 26, 10494-10508(2018).
[4] LI Fang, LI Runhao, YANG Ao et al. Octal data transmission utilizing orbital angular momentum of the vortex light[J]. Laser & Infrared, 54, 885-890(2024).
[5] GIBSON G, COURTIAL J, PADGETT M J et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 12, 5448-5456(2004).
[6] TYLER G A, BOYD R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 34, 142-144(2009).
[7] ZOU Li, ZHAO Shengmei, WANG Le. The effects of atmospheric turbulence on the orbital angular momentum-multiplexed system[J]. Acta Photonica Sinica, 43, 0901001(2014).
[8] PATERSON C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 94, 153901(2005).
[9] CHEN Mu, KE Xizheng. Effect of atmospheric turbulence on the performance of laser communication system[J]. Infrared and Laser Engineering, 45, 115-121(2016).
[10] DJORDJEVIC I B. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation[J]. Optics Express, 19, 14277-14289(2011).
[11] REN Y, XIE G, HUANG H et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 39, 2845-2848(2014).
[12] ZHAO S, WANG L, ZOU L et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing[J]. Optics Communications, 376, 92-98(2016).
[13] ZHOU H L, SHI L, ZHANG X L et al. Dynamic interferometry measurement of orbital angular momentum of light[J]. Optics Letters, 39, 6058-6061(2014).
[14] LI Y X, HAN Y P, CUI Z W. Measuring the topological charge of vortex beams with gradually changing-period spiral spoke grating[J]. IEEE Photonics Technology Letters, 32, 101-104(2020).
[15] ZHAO Q, HAO S, WANG Y et al. Orbital angular momentum detection based on diffractive deep neural network[J]. Optics Communications, 443, 245-249(2019).
[16] KRENN M, FICKLER R, FINK M et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 16, 113028(2014).
[17] SUN R, GUO L, CHENG M et al. Identifying orbital angular momentum modes in turbulence with high accuracy via machine learning[J]. Journal of Optics, 21, 075703(2019).
[18] JING G, CHEN L, WANG P et al. Recognizing fractional orbital angular momentum using feed forward neural network[J]. Results in Physics, 28, 104619(2021).
[19] DOSTER T, WATNIK A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 56, 3386-3396(2017).
[20] SHI Chenyin, WEI Hongyan, JIA Peng et al. Detect the orbital angular momentum of vortex beams after phase distortion based on machine learning[J]. Acta Photonica Sinica, 51, 0151123(2022).
[21] LI Z, LI X, JIA H et al. High-efficiency anti-interference OAM-FSO communication system based on phase compression and improved CNN[J]. Optics Communications, 537, 129120(2023).
[22] XIONG W, HUANG L, WANG P et al. Spectral analysis of intricate orbital angular momentum modes in multiplexing communication using a residual neural network[J]. Optics Communications, 560, 130488(2024).
[23] HAN Z, CHEN X, WANG Y et al. Conditional convolutional GAN-based adaptive demodulator for OAM-SK-FSO communication[J]. Optics Express, 32, 11629-11642(2024).
[24] WANG J, ZHU B. An new scheme using convolutional neural network to recognize orbital angular momentum beams disturbed by atmospheric turbulence[C](2020).
[25] XUE J, ZHU B. Recognizing the topological charge of orbital angular momentum beams under atmospheric turbulence by linear photodiode array detectors with convolutional neural networks[C](2022).
[26] WANG Wei, AN Youwei, HUANG Zhan et al. The implementation of infrared image edge detection algorithm based on CNN on FPGA[J]. Acta Photonica Sinica, 11, 1354-1358(2012).
[27] YUAN Y, LEI T, GAO S et al. The orbital angular momentum spreading for cylindrical vector beams in turbulent atmosphere[J]. IEEE Photonics Journal, 9, 1-10(2017).
[28] ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[M]. Laser Beam Propagation Through Random Media(2005).
[29] LIU J, WANG P, ZHANG X et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication[J]. Optics Express, 27, 16671-16688(2019).
[30] TIAN Q, LI Z, HU K et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator[J]. Optics Express, 26, 27849-27864(2018).
[31] PATERSON C, SMITH R. Higher-order Bessel waves produced by axicon-type computer-generated holograms[J]. Optics Communications, 124, 121-130(1996).
[32] QIANG X, LI Y, ZONG F et al. Measurement of laboratory-simulated atmospheric turbulence by PSD[C], 2-90-2-94(2009).
[33] KE Xizheng, LIAO Zhiwen, LIANG Jingyuan et al. Research on measurement of atmospheric turbulence noise in wireless optical communication[J]. Chinese Journal of Radio Science, 39, 225-236(2024).
[34] REN Y, XIE G, HUANG H et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 1, 376-382(2014).
Get Citation
Copy Citation Text
Xinyu ZHANG, Jin WANG, Jie XUE, Bing ZHU. Recognizing OAM Signals under Atmospheric Turbulence Using Convolutional Neural Networks[J]. Acta Photonica Sinica, 2025, 54(5): 0501001
Category:
Received: Nov. 11, 2024
Accepted: Mar. 4, 2025
Published Online: Jun. 18, 2025
The Author Email: Bing ZHU (zbing@ustc.edu.cn)