Journal of Advanced Dielectrics, Volume. 13, Issue 3, 2350004(2023)
Effects of Mn-doping on the structure and electrical properties of Sm-PMN-PT piezoceramics
[1] Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys., 82, 1804(1997).
[2] High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys., 111, 2(2012).
[3] et?alAdvantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – A review. Prog. Mater. Sci., 68, 1(2015).
[4] et?alElectrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity. Appl. Phys. Rev., 1, 011103(2014).
[5] Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett., 103, 257602(2009).
[6] et?alEffects of Nb, Mn doping on the structure, piezoelectric, and dielectric properties of 0.8Pb(Sn0.46Ti0.54)O3-0.2Pb(Mg1/3Nb2/3)-O3 piezoelectric ceramics. J. Am. Ceram. Soc., 6, 3440(2013).
[7] et?alMultifrequency electron paramagnetic resonance analysis of polycrystalline gadolinium-doped PbTiO3 — Charge compensation and site of incorporation. Appl. Phys. Lett., 88, 122506(2006).
[8] et?alDielectric properties and dielectric aging of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 doped with CaO. Mater. Lett., 57, 2834(2003).
[9] et?alUltrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater., 17, 349(2018).
[10] et?alInvestigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Am. Ceram. Soc., 102, 7428(2019).
[11] et?alGiant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science, 364, 264(2019).
[12] et?alAtomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics. Phys. Rev. B, 101, 140102(R)(2020).
[13] et?alHigh performance Sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 based piezoceramics. ACS Appl. Mater. Interfaces, 11, 43359(2019).
[14] et?alNew Sm-PMN-PT ceramic-based 2-D array for low-intensity ultrasound therapy application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 67, 2085(2020).
[15] et?alPhase structures and electrical properties of Sm doped PSN-PMN-PT ceramics. J. Alloys Compd., 881, 160621(2021).
[16] et?alAchieving high piezoelectric performances with enhanced domain-wall contributions in <001>-textured Sm-modified PMN-29PT ceramics. J. Eur. Ceram. Soc., 41, 2458(2021).
[17] High piezoelectricity via enhanced disorder. Nat. Mater., 17, 297(2018).
[18] et?alEnhanced thermal stability and large piezoelectric properties of Sm-doped Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)-O3-PbTiO3 multifunctional ceramics. J. Mater. Sci., 56, 12121(2021).
[19] Piezoelectric, pyroelectric and dielectric properties of La- and Sm-doped PZT ceramics. J. Mater. Sci. Lett., 12, 1657(1993).
[20] et?alStructural and electrical properties of Sm3+ substituted PZT ceramics. J. Alloys Compd., 468, 356(2009).
[21] Synthesis, dielectric and ferroelectric properties of Sm3+ modified PZTFN ceramics. Mater. Chem. Phys., 251, 123062(2020).
[22] et?alDielectric and ferroelectric properties of PZN-PZT ceramics with lanthanum doping. J. Alloys Compd., 485, 843(2009).
[23] et?alThe effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT). Materials, 9, 945(2016).
[24] et?alDoping and grain-size effects on ferroelectric and mechanical properties of PZT ceramics. Mater. Sci. Forum, 437–438, 483(2003).
[25] Influence of complex additives on the piezoelectric and dielectric properties of PZT ceramics. Adv. Mater. Res., 1110, 259(2015).
[26] et?alOxygen vacancy redistribution in PbZrxTi1−xO3 (PZT) under the influence of an electric field. Solid State Ion., 262, 625(2014).
[27] Role of lower valent substituent-oxygen vacancy complexes in polarization pinning in potassium-modified lead zirconate titanate. Appl. Phys. Lett., 75, 418(1999).
[28] et?alInvestigating the effect of oxygen vacancy on the dielectric and electromechanical properties in ferroelectric ceramics. J. Appl. Phys., 104, 759(2008).
[29] Resistance variation in donor-doped PZT stacks with Cu inner electrodes under high field stress. J. Electroceram., 27, 66(2011).
[30] et?alMn-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, improved mechanical quality factors for high-power transducer applications. Jpn. J. Appl. Phys., 39, 4843(2000).
[31] Effects of Mn-doping on PIN-PMN-PT ceramics with MPB composition. Ferroelectrics, 464, 130(2014).
[32] et?alMn- and Mn/Cu-doped PIN-PMN-PT piezoelectric ceramics for high-power transducers. J. Am. Ceram. Soc., 103, 6319(2020).
[33] Effects of addition of MnO on piezoelectric properties of lead zirconate titanate. J. Mater. Sci., 35, 2477(2000).
[34] Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezoceramics. Inorg. Mater., 42, 573(2006).
[35] et?alEffect of MnO2 on the piezoelectric properties of the 0.75Pb(Zr0.47Ti0.53)O3-0.25Pb(Zn1/3Nb2/3)O3 ceramics. J. Am. Ceram. Soc., 93, 2537(2010).
Get Citation
Copy Citation Text
Chaofeng Wu, Wen Gong, Jinfeng Geng, Jianye Cui, Lipeng Mi, Jingkai Nie, Qiang He, Jiajiu Li, Fang-Zhou Yao. Effects of Mn-doping on the structure and electrical properties of Sm-PMN-PT piezoceramics[J]. Journal of Advanced Dielectrics, 2023, 13(3): 2350004
Category: Research Articles
Received: Dec. 14, 2022
Accepted: Feb. 5, 2023
Published Online: Jul. 18, 2023
The Author Email: Jiajiu Li (1026254157@qq.com), Fang-Zhou Yao (yaofangzhou@xjtu.edu.cn)