Opto-Electronic Engineering, Volume. 51, Issue 12, 240217-1(2024)
Assessment of optic nerve injury with polarization-sensitive optical coherence tomography
[1] Selhorst J B, Chen Y J. The optic nerve[J]. Semin Neurol, 29, 29-35(2009).
[2] Becker M, Masterson K, Delavelle J et al. Imaging of the optic nerve[J]. Eur J Radiol, 74, 299-313(2010).
[3] Hosseini Siyanaki M R, Azab M A, Lucke-Wold B. Traumatic optic neuropathy: update on management[J]. Encyclopedia, 3, 88-101(2023).
[4] Wei Y, Ma Q, Wang C K et al. Advances in optic nerve regenerative repair signaling pathways and gene editing therapeutics[J]. Acta Laser Biol Sin, 32, 414-422(2023).
[5] Benowitz L I, He Z G, Goldberg J L. Reaching the brain: advances in optic nerve regeneration[J]. Exp Neurol, 287, 365-373(2017).
[6] Gospe III S M, Chen J J, Bhatti M T. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment[J]. Eye (Lond), 35, 753-768(2021).
[7] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[8] Laíns I, Wang J C, Cui Y et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Prog Retin Eye Res, 84, 100951(2021).
[9] Eladawi N, Elmogy M, Ghazal M et al. Classification of retinal diseases based on OCT Images[J]. Front Biosci (Landmark Ed), 23, 247-264(2018).
[10] Lamirel C, Newman N J, Biousse V. Optical coherence tomography (OCT) in optic neuritis and multiple sclerosis[J]. Rev Neurol (Paris), 166, 978-986(2010).
[11] Garcia-Martin E, Pinilla I, Sancho E et al. Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations[J]. Retina, 32, 1581-1591(2012).
[12] Li Z S, Sun J S, Fan Y et al. Deep learning assisted variational Hilbert quantitative phase imaging[J]. Opto-Electron Sci, 2, 220023(2023).
[13] Christopher M, Bowd C, Belghith A et al. Deep learning approaches predict glaucomatous visual field damage from OCT optic nerve head En face images and retinal nerve fiber layer thickness maps[J]. Ophthalmology, 127, 346-356(2020).
[14] Wagner S K, Romero-Bascones D, Cortina-Borja M et al. Retinal optical coherence tomography features associated with incident and prevalent Parkinson disease[J]. Neurology, 101, e1581-e1593(2023).
[15] Hee M R, Huang D, Swanson E A et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. J Opt Soc Am B, 9, 903-908(1992).
[16] Zhang Y R, Chang Y, Gao W R. Effect of light polarization state on phase delay measurement induced by tissue birefringence in polarization-sensitive optical coherence tomography imaging system[J]. Acta Opt Sin, 39, 1212007(2019).
[17] Hu Y Z, Gao W R. Polarization-sensitive and intensity dual-channel optical coherence tomographic method[J]. Chin J Lasers, 51, 1507105(2024).
[18] Hund S M M, Golde J, Tetschke F et al. Polarization-sensitive optical coherence tomography for monitoring de- and remineralization of bovine enamel in vitro[J]. Diagnostics (Basel), 14, 367(2024).
[19] Xu J J, Zhu M T, Tang P J et al. Visualization enhancement by PCA-based image fusion for skin burns assessment in polarization-sensitive OCT[J]. Biomed Opt Express, 15, 4190-4205(2024).
[20] Sugita M, Pircher M, Zotter S et al. Retinal nerve fiber bundle tracing and analysis in human eye by polarization sensitive OCT[J]. Biomed Opt Express, 6, 1030-1054(2015).
[21] Parakkel R R, Wong D, Li C et al. Retinal nerve fiber layer damage assessment in glaucomatous eyes using retinal retardance measured by polarization-sensitive optical coherence tomography[J]. Transl Vis Sci Technol, 13, 9(2024).
[22] Xu X, Luo Q, Wang J X et al. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution[J]. Opto-Electron Adv, 7, 230212(2024).
[23] Cense B, Chen T C, Park B H et al. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 45, 2606-2612(2004).
[24] Huang X R, Knighton R W. Microtubules contribute to the birefringence of the retinal nerve fiber layer[J]. Invest Ophthalmol Vis Sci, 46, 4588-4593(2005).
[25] Al-Qaisi M K, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber[J]. Opt Express, 18, 3392-3403(2010).
[26] Tang P J, Xu J J, Wang R K. Imaging and visualization of the polarization state of the probing beam in polarization-sensitive optical coherence tomography[J]. Appl Phys Lett, 113, 231101(2018).
[27] Ortega-Quijano N, Marvdashti T, Ellerbee Bowden A K. Enhanced depolarization contrast in polarization-sensitive optical coherence tomography[J]. Opt Lett, 41, 2350-2353(2016).
[28] van der Meer F J, Faber D J, Aalders M C G et al. Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography[J]. Lasers Med Sci, 25, 259-267(2010).
[29] Huang Y R, Zhang Z M, Tao W L et al. Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome[J]. Opto-Electron Adv, 7, 240035(2024).
[30] Henry F P, Wang Y, Rodriguez C L R et al. In vivo optical microscopy of peripheral nerve myelination with polarization sensitive-optical coherence tomography[J]. J Biomed Opt, 20, 046002(2015).
[31] Jain N S, Jain S V, Wang X F et al. Visualization of nerve fiber orientations in the human optic chiasm using photomicrographic image analysis[J]. Invest Ophthalmol Vis Sci, 56, 6734-6739(2015).
[32] Li S X. Editorial: advances in CNS repair, regeneration, and neuroplasticity: from basic mechanisms to therapeutic strategies[J]. Front Cell Neurosci, 16, 898546(2022).
[33] Grinblat G A, Khan R S, Dine K et al. RGC neuroprotection following optic nerve trauma mediated by intranasal delivery of amnion cell secretome[J]. Invest Ophthalmol Vis Sci, 59, 2470-2477(2018).
[34] Evanson N K, Guilhaume-Correa F, Herman J P et al. Optic tract injury after closed head traumatic brain injury in mice: a model of indirect traumatic optic neuropathy[J]. PLoS One, 13, e0197346(2018).
Get Citation
Copy Citation Text
Huangxiong Zhan, Lei Zhang, Shujun Men, Jiamin Wang, Zi Jin, Li Huo, Meixiao Shen, Yuanyuan Wang. Assessment of optic nerve injury with polarization-sensitive optical coherence tomography[J]. Opto-Electronic Engineering, 2024, 51(12): 240217-1
Category: Article
Received: Sep. 14, 2024
Accepted: Nov. 20, 2024
Published Online: Feb. 21, 2025
The Author Email: