Computer Applications and Software, Volume. 42, Issue 4, 257(2025)
FEATURE LEVEL FUSION DETECTION ALGORITHM OF VISIBLE AND INFRARED IMAGES BASED ON IMPROVED YOLOv5
[3] [3] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[4] [4] Girshick R. Fast R-CNN[C]//IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] [5] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[6] [6] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
[7] [7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] [8] Redmon J, Farhadi A. Yolo9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[9] [9] Redmon J, Farhadi A. YOLOv3: An incremental improvement[EB]. arXiv: 1804.02767, 2018.
[10] [10] Wang C Y, Wang C Y, Liao H Y. YOLOv4: Optimal speed and accuracy of object detection[EB]. arXiv: 2004.10934v1, 2020.
[13] [13] Li H, Wu X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623.
[14] [14] Wu Y, Chen Y P, Yuan L, et al. Rethinking classification and localization for object detection[EB]. arXiv: 1904.06493, 2020.
[15] [15] Wang C Y, Liao H Y, Wu Y H, et al. CSPNET: A new backbone that can enhance learning capability of CNN[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.
[16] [16] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[EB]. arXiv: 1911.08287, 2019.
[17] [17] Huang G, Liu Z, Maaten L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2261-2269.
[18] [18] Prabhakar K R, Srikar V S, Babu R V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs[C]//IEEE International Conference on Computer Vision, 2017: 4724-4732.
[19] [19] Ge Z, Liu S T, Wang F, et al. YOLOX: Exceeding YOLO series in 2021[EB]. arXiv: 2107.08430, 2021.
Get Citation
Copy Citation Text
Liang Siyuan, Dou Fei, Xie Shating, Zhao Hongyi, Tian Qing. FEATURE LEVEL FUSION DETECTION ALGORITHM OF VISIBLE AND INFRARED IMAGES BASED ON IMPROVED YOLOv5[J]. Computer Applications and Software, 2025, 42(4): 257
Category:
Received: Feb. 10, 2022
Accepted: Aug. 25, 2025
Published Online: Aug. 25, 2025
The Author Email: