Journal of Synthetic Crystals, Volume. 49, Issue 12, 2287(2020)

Numerical Simulation of Monolayer n-Type MoS2/p-Type c-Si Heterojunction Solar Cells

CHEN Yun and CAI Houdao
Author Affiliations
  • [in Chinese]
  • show less
    References(18)

    [1] [1] Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322.

    [2] [2] Choi M, Park Y J, Sharma B K, et al. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor[J]. Science Advances, 2018, 4(4): eaas8721.

    [3] [3] Shim Y S, Kwon K C, Suh J M, et al. Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor[J]. ACS Appl Mater Interfaces, 2018, 10: 31594-31602.

    [4] [4] Dhyani V, Das S. High-speed scalable silicon-MoS2 P-N heterojunction photodetectors[J]. Sentific Reports, 2017, 7: 44243.

    [5] [5] Lopez-SAnchez O, Alarcon-Llado E, Koman V, et al. Light generation and harvesting in a Van der Waals heterostructure[J].ACS Nano, 2014, 8(3): 3042-3048.

    [7] [7] Tiwari P, Patel K, Krishnia L, et al. Potential application of multilayer n-type tungsten diselenide (WSe2) sheet as transparent conducting electrode in silicon heterojunction solar cell[J]. Computational Materials Science, 2017, 136: 102-108.

    [8] [8] Huang R M, Yu M, Yang Q R, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 178: 109600.

    [12] [12] Santos E J G, Kaxiras E. Electrically-driven tuning of the dielectric constant in MoS2 layers[J]. Acs Nano, 2013, 7:10741-10746.

    [13] [13] Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820.

    [14] [14] Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2[J]. Nano Letters, 2014, 14(8): 4628-4633.

    [15] [15] Howell S L, Jariwala D, Wu C C, et al. Investigation of band-offsets at monolayer-multilayer MoS2 junctions by scanning photocurrent microscopy[J]. Nano Letters, 2015, 15(4): 2278-2284.

    [16] [16] Zhang H, Ma Y, Wan Y, et al. Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence[J]. Sci Rep, 2015, 5: 8440.

    [17] [17] Kim J H, Lee J, Kim J H, et al. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules[J]. Applied Physics Letters, 2015, 106(25): 699.

    [18] [18] Huang R, Yu M, Yang Q, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 18: 109600.

    [19] [19] Rand B P, Genoe J, Heremans P, et.al. Solar cells utilizing small molecular weight organic semiconductors[J]. Prog Photovoltaics: Res Appl, 2007, 15: 659-676.

    [20] [20] Thakur U K, Kisslinger R, Shankar K. One-dimensional electron transport layers for perovskite solar cells[J]. Nanomaterials, 2017, 7(95): 1-27.

    [21] [21] Jensen N, Hausner R M, Bergmann R B, et. al. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells[J]. Prog Photovolt: Res Appl, 2002, 10: 1-13.

    Tools

    Get Citation

    Copy Citation Text

    CHEN Yun, CAI Houdao. Numerical Simulation of Monolayer n-Type MoS2/p-Type c-Si Heterojunction Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(12): 2287

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: --

    Accepted: --

    Published Online: Jan. 26, 2021

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics