Opto-Electronic Engineering, Volume. 51, Issue 10, 240179(2024)

Colorectal polyp segmentation method combining polarized self-attention and Transformer

Bin Xie1, Yangqian Liu1、*, and Yulin Li2
Author Affiliations
  • 1School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China
  • 2School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China
  • show less
    References(25)

    [1] Liang H, Cheng Z M, Zhong H Q et al. A region-based convolutional network for nuclei detection and segmentation in microscopy images[J]. Biomed Signal Process Control, 71, 103276(2022).

    [2] Jha D, Smedsrud P H, Johansen D et al. A comprehensive study on colorectal polyp segmentation with ResUNet++,conditional random field and test-time augmentation[J]. IEEE J Biomed Health Inform, 25, 2029-2040(2021).

    [3] Li W S, Zhao Y H, Li F Y et al. MIA-Net: multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation[J]. Knowl-Based Syst, 247, 108824(2022).

    [4] Ding J H, Yuan M H. A multi-target semantic segmentation method for millimetre wave SAR images based on a dual-branch multi-scale fusion network[J]. Opto-Electron Eng, 50, 230242(2023).

    [5] Vala M H J, Baxi A. A review on Otsu image segmentation algorithm[J]. Int J Adv Res Comput Eng Technol, 2, 387-389(2013).

    [6] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Trans Pattern Anal Mach Intell, 13, 583-598(1991).

    [7] Canny J. A computational approach to edge detection[J]. IEEE Trans Pattern Anal Mach Intell, PAMI-8, 679-698(1986).

    [8] Liang Y B, Fu J. Watershed algorithm for medical image segmentation based on morphology and total variation model[J]. Int J Patt Recogn Artif Intell, 33, 1954019(2019).

    [9] Ali S M F, Khan M T, Haider S U et al. Depth-wise separable atrous convolution for polyps segmentation in gastro-intestinal tract[C](2021).

    [10] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth 16x16 words: transformers for image recognition at scale[C](2021).

    [12] Wu C, Long C, Li S J et al. MSRAformer: multiscale spatial reverse attention network for polyp segmentation[J]. Comput Biol Med, 151, 106274(2022).

    [17] Bernal J, Sánchez F J, Fernández-Esparrach G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Comput Med Imaging Graph, 43, 99-111(2015).

    [18] Amsaleg L, Huet B, Larson M et al. Proceedings of the 27th ACM international conference on multimedia[C](2019).

    [19] Silva J, Histace A, Romain O et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. Int J Comput Assist Radiol Surg, 9, 283-293(2014).

    [20] Tajbakhsh N, Gurudu S R, Liang J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Trans Med Imaging, 35, 630-644(2016).

    Tools

    Get Citation

    Copy Citation Text

    Bin Xie, Yangqian Liu, Yulin Li. Colorectal polyp segmentation method combining polarized self-attention and Transformer[J]. Opto-Electronic Engineering, 2024, 51(10): 240179

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Jul. 30, 2024

    Accepted: Sep. 19, 2024

    Published Online: Jan. 2, 2025

    The Author Email: Yangqian Liu (刘阳倩)

    DOI:10.12086/oee.2024.240179

    Topics