Opto-Electronic Engineering, Volume. 50, Issue 10, 230216-1(2023)

An improved lightweight fire detection algorithm based on cascade sparse query

Xiaoxue Zhang1, Yu Wang1, Siyuan Wu2, and Bangyong Sun1,2、*
Author Affiliations
  • 1College of Printing, Packaging and Digital Media, Xi’an University of Technology, Xi’an, Shaanxi 710054, China
  • 2Key Laboratory of Spectral Imaging Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • show less
    Figures & Tables(15)
    Network architecture of LFNet
    Efficient channel attention module
    (a) Original; (b) Attention mechanism heat map
    Cascade sparse query module
    Cascade sparse query head module
    Clustering experiment results on SF-dataset
    Clustering results. (a) SF-dataset; (b) D-fire; (c) FIRESENSE
    Comparison experiment detection results for the SF-dataset. (a) Images;(b) Ours;(c) EFDNet;(d) Y-Edge;(e) M-YOLO;(f) Fire-YOLO;(g) YOLOX-Tiny;(h) PicoDet;(i) PP-YOLOE;(j) YOLOv7
    Comparison experiment detection results for the D-fire dataset. (a) Images;(b) Ours;(c) EFDNet;(d) Y-Edge;(e) M-YOLO;(f) Fire-YOLO;(g) YOLOX-Tiny;(h) PicoDet;(i) PP-YOLOE;(j) YOLOv7;
    Comparison experiment detection results for the FIRESENSE dataset. (a) Images;(b) Ours;(c) EFDNet;(d) Y-Edge;(e) M-YOLO;(f) Fire-YOLO;(g) YOLOX-Tiny;(h) PicoDet;(i) PP-YOLOE;(j) YOLOv7
    Parameters experiment of percentage of training samples, batch size and patch size on the Santa Barbara dataset (a) Percentage of training dataset samples; (b) Batch size; (c) Model input size; (d) Epoch
    • Table 1. Numbers of training set, validation set and testing set for the three datasets

      View table
      View in Article

      Table 1. Numbers of training set, validation set and testing set for the three datasets

      数据集训练集验证集测试集总数
      FireSmokeNoneFireSmokeNoneFireSmokeNone
      SF-dataset48594859485960760760760760760718219
      D-Fire46584693787058258798458258798421527
      FIRESENSE(video)9112111211249
    • Table 2. Experimental precision results of different comparative methods on different datasets

      View table
      View in Article

      Table 2. Experimental precision results of different comparative methods on different datasets

      数据集方法指标
      Recall/%Precision/%Accuracy/%mAP/%
      注:加粗字体表示最优结果
      SF-datasetCelik 等[19]38.4569.5472.1241.58
      Demirel 等[2]42.2873.6578.5447.15
      Zhang 等[20]40.1272.7773.1545.4
      Fire-YOLO[21]49.9387.0590.0969.38
      EFDNet[22]44.2780.4582.2859.89
      Pruned+KD[23]47.2583.1685.6463.1
      YOLOX-Tiny[24]49.9586.8989.2469.08
      PicoDet[25]50.187.190.1369.42
      YOLOv7[26]54.1288.6494.8871.69
      LFNet54.9889.1298.571.76
      D-fireCelik 等[19]35.9065.7868.4239.65
      Demirel 等[2]40.6873.1278.2745.85
      Zhang 等[20]38.6770.4570.8643.94
      Fire-YOLO[21]51.1884.1288.2168.88
      EFDNet[22]43.6876.5777.9458.77
      Pruned+KD[23]46.0279.8582.462.71
      YOLOX-Tiny[24]51.0683.9486.1468.14
      PicoDet[25]51.2784.3288.2668.95
      YOLOv7[26]53.1286.4493.8570.65
      LFNet53.3587.6897.9271.15
      FIRESENSECelik 等[19]33.756.0760.2136.48
      Demirel 等[2]38.5564.2869.4442.66
      Zhang 等[20]36.9661.5862.3840.36
      Fire-YOLO[21]52.4779.8885.1968.12
      EFDNet[22]42.7468.2570.2256.97
      Pruned+KD[23]46.8072.9475.161.35
      YOLOX-Tiny[24]53.9480.4484.1268.02
      PicoDet[25]52.9680.9285.9168.89
      YOLOv7[26]54.5389.7696.2870.15
      LFNet53.1992.4498.4270.61
    • Table 3. Experimental speed results of different comparative methods on SF-dataset

      View table
      View in Article

      Table 3. Experimental speed results of different comparative methods on SF-dataset

      方法指标
      Flops/GParameter/MSpeed/(f/s)Infer time/msmAP/%
      M-YOLO[27]7.5423.81850.666.6
      Fire-YOLO[21]45.126228 32.17 69.38
      EFDNet[22]1.993.6637.2159.89
      Y-Edge[25]30.4753.83627.9765.95
      Prund+KD[23]16.826.34517.2563.1
      PPYOLO-Tiny[28]4.9617.844223.868.36
      YOLOX-Tiny[24]5.4219.194025.2169.08
      PicoDet[25]0.7341056.6569.42
      PPYOLOE[29]29.4252.209825.6470.85
      YOLOv7[26]18.4236.98819.8571.69
      LFNet3.8512.69810.2471.76
    • Table 4. Experimental results of Ablation experiments

      View table
      View in Article

      Table 4. Experimental results of Ablation experiments

      Model方法指标
      ECDNetFPN+PCSQHQFocal-CIOUSlimmingmAP(%)Recall/%Parameter/M)Speed/(f/s)
      注:加粗字体表示最优结果
      YOLOv5s67.8949.3827.684
      68.8950.9627.684
      70.1551.5327.780
      70.6152.1227.791
      71.1553.3527.791
      71.7652.9812.698
    Tools

    Get Citation

    Copy Citation Text

    Xiaoxue Zhang, Yu Wang, Siyuan Wu, Bangyong Sun. An improved lightweight fire detection algorithm based on cascade sparse query[J]. Opto-Electronic Engineering, 2023, 50(10): 230216-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Sep. 1, 2023

    Accepted: Nov. 15, 2023

    Published Online: Jan. 22, 2024

    The Author Email: Bangyong Sun (孙帮勇)

    DOI:10.12086/oee.2023.230216

    Topics