Laser & Optoelectronics Progress, Volume. 61, Issue 22, 2215005(2024)
Fatigue Driving Detection Under Low Illumination Using Image Enhancement and Facial State Recognition
Fig. 2. The visualization results of each image enhancement method. (a) Original image; (b) LIME; (c) EnlightenGAN; (d) SCI
Fig. 4. ShuffleNetV2 module. (a) Basic module S_block1; (b) subsampling module S_block2
Fig. 5. Bottleneck module and inverted bottleneck module. (a) Bottleneck module; (b) inverted bottleneck module
Fig. 13. Schematic diagrams of an image capture of the eye and mouth. (a) Cropped image of the eye region; (b) cropped image of the mouth region
Fig. 17. Examples of fatigue driving dataset. (a) Examples of the YawDD public dataset; (b) examples of the self-built dataset
Fig. 19. Examples of fatigue detection results. (a)‒(d) YawDD public dataset detection results; (e)‒(h) self-built dataset detection results
|
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Yang Zhao, Jialong Miao, Xuefeng Liu, Jincheng Zhao, Sen Xu. Fatigue Driving Detection Under Low Illumination Using Image Enhancement and Facial State Recognition[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2215005
Category: Machine Vision
Received: Feb. 20, 2024
Accepted: Mar. 25, 2024
Published Online: Nov. 19, 2024
The Author Email: Jialong Miao (igxiaodingdang@163.com)
CSTR:32186.14.LOP240711