Journal of Synthetic Crystals, Volume. 50, Issue 5, 783(2021)
Multifunctional Properties and Device Applications of the Relaxor Ferroelectric Single Crystals
[1] [1] THOMAS L A. Applications of ferroelectrics and related materials: a review of developments in Europe[J]. Ferroelectrics, 1972, 3(1): 231-238.
[2] [2] JIN L, LI F, ZHANG S J. Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures[J]. Journal of the American Ceramic Society, 2014, 97(1): 1-27.
[3] [3] LI F, ZHANG S J, YANG T N, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals[J]. Nature Communications, 2016, 7: 13807.
[4] [4] CROSS L E. Relaxor ferroelectrics[J]. Ferroelectrics, 1987, 76(1): 241-267.
[5] [5] BANKS R, O’LEARY R L, HAYWARD G. Enhancing the bandwidth of piezoelectric composite transducers for air-coupled non-destructive evaluation[J]. Ultrasonics, 2017, 75: 132-144.
[6] [6] YAMASHITA Y, HARADA K, SAITOH S. Recent applications of relaxor materials[J]. Ferroelectrics, 1998, 219(1): 29-36.
[8] [8] BOVTUN V, VELJKO S, KAMBA S, et al. Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: single crystals, ceramics and thin films[J]. Journal of the European Ceramic Society, 2006, 26(14): 2867-2875.
[10] [10] SUN E W, CAO W W. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications[J]. Progress in Materials Science, 2014, 65: 124-210.
[11] [11] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-a review[J]. Progress in Materials Science, 2015, 68: 1-66.
[12] [12] LEE S G, MONTEIRO R G, FEIGELSON R S, et al. Growth and electrostrictive properties of Pb(Mg1/3Nb2/3)O3 crystals[J]. Applied Physics Letters, 1999, 74(7): 1030-1032.
[13] [13] SHROUT T R, CHANG Z P, KIM N, et al. Dielectric behavior of single crystals near the (1-x) Pb(Mg1/3Nb2/3)O3-x PbTiO3 morphotropic phase boundary[J]. Ferroelectrics Letters Section, 1990, 12(3): 63-69.
[14] [14] JABLONSKAS D, GRIGALAITIS R, BANYS J, et al. Broadband dielectric spectra in PbMg1/3Nb2/3O3 crystals with chemical order modified by La doping[J]. Applied Physics Letters, 2015, 107(14): 142905.
[15] [15] ISHIBASHI Y, IWATA M. Morphotropic phase boundary in solid solution systems of perovskite-type oxide ferroelectrics[J]. Japanese Journal of Applied Physics, 1998, 37(Part 2, No. 8B): L985-L987.
[16] [16] YE Z G, DONG M. Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Journal of Applied Physics, 2000, 87(5): 2312-2319.
[17] [17] XU G S, LUO H S, XU H Q, et al. Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition[J]. Physical Review B, 2001, 64(2): 020102.
[18] [18] VANDERBILT D, COHEN M H. Monoclinic and triclinic phases in higher-order Devonshire theory[J]. Physical Review B, 2001, 63(9): 094108.
[19] [19] KIAT J M, UESU Y, DKHIL B, et al. Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds[J]. Physical Review B, 2002, 65(6): 064106.
[20] [20] ZHOU D, CHEN J, LUO H S. Piezoelectric single crystals of Pb(Mg1/3Nb2/3)O3-PbTiO3 and their applications in medical ultrasonic transducers[C]//2008 International Conference on BioMedical Engineering and Informatics. May 27-30, 2008, Sanya, China. IEEE, 2008: 662-666.
[21] [21] ZHOU D, CHEN J, LUO L H, et al. Optimized orientation of 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal for applications in medical ultrasonic arrays[J]. Applied Physics Letters, 2008, 93(7): 073502.
[22] [22] WANG W, WANG S, ZHANG Y Y, et al. Beam-mode piezoelectric properties of Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3) O3-PbTiO3 single crystalsfor medical linear array applications[J]. Journal of Electronic Materials, 2011, 40(11): 2228-2233.
[23] [23] WONG C M, CHEN Y, LUO H S, et al. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer[J]. Ultrasonics, 2017, 73: 181-186.
[24] [24] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358(6382): 136-138.
[25] [25] PARK S E, WADA S, CROSS L E, et al. Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics[J]. Journal of Applied Physics, 1999, 86(5): 2746-2750.
[26] [26] WADA S, SUZUKI S, NOMA T, et al. Enhanced piezoelectric property of Barium titanate single crystals with engineered domain configurations[J]. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 9B): 5505-5511.
[27] [27] FU H X, COHEN R E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J]. Nature, 2000, 403(6767): 281-283.
[28] [28] LI X B, ZHAO X Y, REN B, et al. Microstructure and dielectric relaxation of dipolar defects in Mn-doped (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Scripta Materialia, 2013, 69(5): 377-380.
[29] [29] GEHRING P M, PARSHALL D, HARRIGER L, et al. Correspondence: phantom phonon localization in relaxors[J]. Nature Communications, 2017, 8(1): 1-2.
[30] [30] SHVARTSMAN V V, DKHIL B, KHOLKIN A L. Mesoscale domains and nature of the relaxor state by piezoresponse force microscopy[J]. Annual Review of Materials Research, 2013, 43(1): 423-449.
[31] [31] SMOLENSKII G A. On the mechanism of polarization in solid solutions of PNN-PMN[J]. J Tech Phys USSR, 1958, 28(7): no.
[32] [32] SMOLENSKII G A, KRAINIK N N, POPOV S N. Some phenomena in crystals lacking an inversion center[J]. Sov Sci Rev Phys A, 1985, 6: 261.
[33] [33] BONNER W A, VAN UITERT L G. Growth of single crystals of Pb3MgNb2O9 by the Kyropoulos technique[J]. Materials Research Bulletin, 1967, 2(1): 131-134.
[34] [34] KUWATA J, UCHINO K, NOMURA S. Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals[J]. Japanese Journal of Applied Physics, 1982, 21(Part 1, No. 9): 1298-1302.
[35] [35] KUWATA J, UCHINO K, NOMURA S. Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1): 579-582.
[36] [36] PARK S E, SHROUT T R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44(5): 1140-1147.
[37] [37] LUO H S, XU G S, WANG P C, et al. Growth and characterization of relaxor ferroelectric PMNT single crystals[J]. Ferroelectrics, 1999, 231(1): 97-102.
[38] [38] LUO H S, XU G S, XU H Q, et al. Compositional homogeneity and electrical properties of lead magnesium niobate titanate single crystals grown by a modified bridgman technique[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 9B): 5581-5585.
[39] [39] SERVICE R F. Materials science: shape-changing crystals get shiftier[J]. Science, 1997, 275(5308): 1878-.
[43] [43] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354.
[44] [44] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268.
[45] [45] XU J L, DENG H, ZENG Z, et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer[J]. Applied Physics Letters, 2018, 112(18): 182901.
[46] [46] BOSAK A, CHERNYSHOV D, VAKHRUSHEV S, et al. Diffuse scattering in relaxor ferroelectrics: true three-dimensional mapping, experimental artefacts and modelling[J]. Acta Crystallographica Section A Foundations of Crystallography, 2012, 68(1): 117-123.
[47] [47] XU G Y, SHIRANE G, COPLEY J R D, et al. Neutron elastic diffuse scattering study of Pb(Mg1/3Nb2/3)O3[J]. Physical Review B, 2004, 69(6): 064112.
[48] [48] GEHRING P M. Neutron diffuse scattering in lead-based relaxor ferroelectrics and its relationship to the ultra-high piezoelectricity[J]. Journal of Advanced Dielectrics, 2012, 2(2): 1241005.
[49] [49] PASCIAK M, WELBERRY T R, KULDA J, et al. Polar nanoregions and diffuse scattering in the relaxor ferroelectric PbMg1/3Nb2/3O3[J]. Physical Review B, 2012, 85(22): 224109.
[50] [50] GEHRING P M, HIRAKA H, STOCK C, et al. Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb(Mg1/3Nb2/3)O3[J]. Physical Review B, 2009, 79(22): 224109.
[51] [51] YOU H, ZHANG Q M. Diffuse X-ray scattering study of lead magnesium niobate single crystals[J]. Physical Review Letters, 1997, 79(20): 3950-3953.
[52] [52] GUO Y P, LUO H S, CHEN K P, et al. Effect of composition and poling field on the properties and ferroelectric phase-stability of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals[J]. Journal of Applied Physics, 2002, 92(10): 6134-6138.
[55] [55] ZHOU D, WANG F F, LUO L H, et al. Characterization of complete electromechanical constants of rhombohedral 0.72Pb(Mg1/3Nb2/3)-0.28 PbTiO3single crystals[J]. Journal of Physics D: Applied Physics, 2008, 41(18): 185402.
[56] [56] WANG W, LIU D A, ZHANG Q H, et al. Shear-mode piezoelectric properties of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Journal of Applied Physics, 2010, 107(8): 084101.
[57] [57] WANG W, ZHANG Y Y, ZHAO X Y, et al. High Curie temperature piezoelectric single crystals Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 and their applications in medical ultrasonic transducers[C]//Proceedings of the 2010 Symposium on Piezoelectricity, Acoustic Waves and Device Applications. December 10-13, 2010, Xiamen, China. IEEE, 2010: 191-195.
[58] [58] YUE Q W, DENG J, SHE J X, et al. High performanced single crystal/epoxy composites and their application in broadband transducers[C]//2015 IEEE International Ultrasonics Symposium (IUS). October 21-24, 2015, Taipei, Taiwan, China. IEEE, 2015: 1-4.
[59] [59] ZHOU D, LUO H S. Vibration mode and relevant ultrasonic applications of ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT)[C]//2008 IEEE Ultrasonics Symposium. November 2-5, 2008, Beijing, China. IEEE, 2008: 168-170.
[60] [60] YUE Q, LIU D, WANG W, et al. Fabrication of a PMN-PT single crystal-based transcranial Doppler transducer and the power regulation of its detection system[J]. Sensors (Basel), 2014, 14(12): 24462-24471.
[61] [61] WANG W, ZHAO X Y, OR S W, et al. Broadband ultrasonic linear array using ternary PIN-PMN-PT single crystal[J]. Review of Scientific Instruments, 2012, 83(9): 095001.
[62] [62] WANG W, OR S W, YUE Q W, et al. Cylindrically shaped ultrasonic linear array fabricated using PIMNT/epoxy 1-3 piezoelectric composite[J]. Sensors and Actuators A: Physical, 2013, 192: 69-75.
[63] [63] ZHANG Z, XU J L, YANG L L, et al. Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2018, 283: 273-281.
[64] [64] ZHANG Z, XU J L, XIAO J J, et al. Simulation and analysis of the PMN-PT based phased array transducer with the high sound velocity matching layer[J]. Sensors and Actuators A: Physical, 2020, 313: 112195.
[65] [65] ZHANG Z, XU J L, YANG L L, et al. The performance enhancement and temperature dependence of piezoelectric properties for Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystal by alternating current polarization[J]. Journal of Applied Physics, 2019, 125(3): 034104.
[66] [66] XU J L, ZHANG Z, LIU S X, et al. Optimizing the piezoelectric vibration of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 single crystal by alternating current polarization for ultrasonic transducer[J]. Applied Physics Letters, 2020, 116(20): 202903.
[67] [67] ZHANG Z, XU J L, LIU S X, et al. FEM simulation and comparison of PMN-PT single crystals based phased array ultrasonic transducer by alternating current poling and direct current poling[J]. Ultrasonics, 2020, 108: 106175.
[68] [68] SONG H C, CHO S, KANG T, et al. Long-range acoustic communication in deep water using a towed array[J]. The Journal of the Acoustical Society of America, 2011, 129(3): EL71-EL75.
[72] [72] SAMMOURA F, SHELTON S, AKHBARI S, et al. A two-port piezoelectric micromachined ultrasonic transducer[C]//2014 15th International Conference on Electronic Packaging Technology. August 12-15, 2014. Chengdu, China. IEEE, 2014.
[73] [73] MEYER R J, MONTGOMERY T C, HUGHES W J. Tonpilz transducers designed using single crystal piezoelectrics[C]//OCEANS '02 MTS/IEEE. October 29-31, 2002, Biloxi, MI, USA. IEEE, 2002: 2328-2333.
[74] [74] LAU S T, LAM K H, CHAN H L W, et al. Ferroelectric lead magnesium niobate-lead titanate single crystals for ultrasonic hydrophone applications[J]. Materials Science and Engineering: B, 2004, 111(1): 25-30.
[75] [75] SHERLOCK N P, MEYER R J. Modified single crystals for high-power underwater projectors[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(6): 1285-1291.
[76] [76] ZHANG Y Y, ZHAO X Y, WANG W, et al. Fabrication of PIMNT/epoxy 1-3 composites and ultrasonic transducer for nondestructive evaluation[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(9): 1774-1781.
[77] [77] YUE Q W, LIU D X, DENG J, et al. Design and fabrication of relaxor-ferroelectric single crystal PIN-PMN-PT/epoxy 2-2 composite based array transducer[J]. Sensors and Actuators A: Physical, 2015, 234: 34-42.
[79] [79] BROWN J A, DUNPHY K, LEADBETTER J R, et al. Fabrication and performance of a single-crystal lead magnesium niobate-lead titanate cylindrical hydrophone[J]. The Journal of the Acoustical Society of America, 2013, 134(2): 1031-1038.
[80] [80] TANG Y X, LUO H S. Investigation of the electrical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3single crystals with special reference to pyroelectric detection[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075406.
[81] [81] TANG Y X, ZHAO X Y, WAN X M, et al. Composition, dc bias and temperature dependence of pyroelectric properties of 〈111〉-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals[J]. Materials Science and Engineering: B, 2005, 119(1): 71-74.
[82] [82] TANG Y X, LUO L H, JIA Y M, et al. Mn-doped 0.71Pb(Mg1/3Nb2/3)O3-0.29 PbTiO3 pyroelectric crystals for uncooled infrared focal plane arrays applications[J]. Applied Physics Letters, 2006, 89(16): 162906.
[83] [83] LIU L H, LI X B, WU X, et al. Dielectric, ferroelectric, and pyroelectric characterization of Mn-doped 0.74Pb(Mg1/3Nb2/3)O3-0.26PbTiO3 crystals for infrared detection applications[J]. Applied Physics Letters, 2009, 95(19): 192903.
[84] [84] YU P, WANG F F, ZHOU D, et al. Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In12Nb12)O3-Pb(Mg13Nb23)O3-PbTiO3 ternary single crystal[J]. Applied Physics Letters, 2008, 92(25): 252907.
[85] [85] LIU L H, WU X, WANG S, et al. Growth and pyroelectric properties of rhombohedral 0.21Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ternary single crystals[J]. Journal of Crystal Growth, 2011, 318(1): 856-859.
[86] [86] YANG L R, LI L, ZHAO X Y, et al. Enhanced pyroelectric properties and application of tetragonal Mn-doped 0.29Pb(In1/2Nb1/2)O3-0.31Pb(Mg1/3Nb2/3)O3-0.40PbTiO3 ternary single crystals[J]. Journal of Alloys and Compounds, 2017, 695: 760-764.
[87] [87] TANG Y X, WAN X M, ZHAO X Y, et al. Large pyroelectric response in relaxor-based ferroelectric (1-x)Pb(Mg13Nb23)O3-xPbTiO3 single crystals[J]. Journal of Applied Physics, 2005, 98(8): 084104.
[88] [88] TANG Y X, ZHAO X Y, FENG X Q, et al. Pyroelectric properties of [111]-oriented Pb(Mg13Nb23)O3-PbTiO3 crystals[J]. Applied Physics Letters, 2005, 86(8): 082901.
[89] [89] XU Q, ZHAO X Y, LI X B, et al. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect[J]. Infrared Physics & Technology, 2016, 76: 111-115.
[90] [90] WAN X M, LUO H S, WANG J, et al. Investigation on optical transmission spectra of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Solid State Communications, 2004, 129(6): 401-405.
[91] [91] WAN X M, CHAN H L W, CHOY C L, et al. Optical properties of (1-x)Pb(Mg13Nb23)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2004, 96(3): 1387-1391.
[92] [92] WAN X M, LUO H S, ZHAO X Y, et al. Refractive indices and linear electro-optic properties of (1-x)Pb(Mg13Nb23)O3-xPbTiO3 single crystals[J]. Applied Physics Letters, 2004, 85(22): 5233-5235.
[93] [93] JIANG H, ZOU Y K, CHEN Q, et al. Transparent electro-optic ceramics and devices[C]//Photonics Asia. Proc SPIE 5644, Optoelectronic Devices and Integration, Beijing, China. 2005, 5644: 380-394.
[95] [95] WU J, KONG Y F, ZHANG L, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica Technologica, 2017, 47(11): 1139-1148.
[96] [96] LIU K, YE C R, KHAN S, et al. Review and perspective on ultrafast wavelength-size electro-optic modulators[J]. Laser & Photonics Reviews, 2015, 9(2): 172-194.
[97] [97] AILLERIE M, THOFANOUS N, FONTANA M D. Measurement of the electro-optic coefficients: description and comparison of the experimental techniques[J]. Applied Physics B, 2000, 70(3): 317-334.
[100] [100] WANG Y J, LI J F, VIEHLAND D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives[J]. Materials Today, 2014, 17(6): 269-275.
[101] [101] CHU Z Q, SHI H D, SHI W L, et al. Enhanced resonance magnetoelectric coupling in (1-1) connectivity composites[J]. Advanced Materials, 2017, 29(19): 1606022.
[102] [102] SHEN Y, HASANYAN D, GAO J Q, et al. A magnetic signature study using magnetoelectric laminate sensors[J]. Smart Materials and Structures, 2013, 22(9): 095007.
[103] [103] SHI J X, WU M, HU W L, et al. A study of high piezomagnetic (Fe-Ga/Fe-Ni) multilayers for magnetoelectric device[J]. Journal of Alloys and Compounds, 2019, 806: 1465-1468.
[104] [104] RYU J, PRIYA S, UCHINO K, et al. Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials[J]. Journal of Electroceramics, 2002, 8(2): 107-119.
[105] [105] RYU J, PRIYA S, UCHINO K, et al. High magnetoelectric properties in 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3Single crystal and terfenol-D laminate composites[J]. Journal of the Korean Ceramic Society, 2002, 39(9): 813-817.
[106] [106] WANG Y J, GRAY D, BERRY D, et al. An extremely low equivalent magnetic noise magnetoelectric sensor[J]. Advanced Materials, 2011, 23(35): 4111-4114.
[107] [107] CHEN R, CHEN Z Y, HU F, et al. Reducing the equivalent magnetic noise of Metglas/Mn-PMNT laminate composites via annealing treatment[J]. Journal of Magnetism and Magnetic Materials, 2020, 512: 166976.
[108] [108] FANG C, MA J S, YAO M, et al. Equivalent magnetic noise reduction at high frequency range due to polarized direction optimization in Terfenol-D/Pb(Mg1/3Nb2/3)O3-PbTiO3 magnetoelectric laminate sensors[J]. Journal of Magnetism and Magnetic Materials, 2017, 423: 106-110.
[109] [109] JIAO J, WANG W, LI L Y, et al. An improved magnetic field detection unit based on length-magnetized Terfenol-D and width-polarized ternary 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3[J]. Applied Physics Letters, 2012, 101(23): 232906.
[110] [110] LIU Y T, JIAO J, LI L Y, et al. Vibrational noise rejection in multilayer structured magnetoelectric sensor[J]. Sensors and Actuators A: Physical, 2014, 211: 15-18.
[111] [111] FANG C, JIAO J, MA J S, et al. Significant reduction of equivalent magnetic noise by in-plane series connection in magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3laminate composites[J]. Journal of Physics D: Applied Physics, 2015, 48(46): 465002.
[112] [112] JIAO J, LI L Y, REN B, et al. Parallel multilayer magnetoelectric composite based on (1-x)Pb(Mg1/3Nb2/3)-xPbTiO3 and Terfenol-D coupled with charge mode amplifier[J]. Journal of Applied Physics, 2012, 111(4): 043909.
Get Citation
Copy Citation Text
LUO Haosu, JIAO Jie, CHEN Rui, ZHU Rongfeng, ZHANG Zhang, XU Jialin, ZHAO Jing, WANG Xi’an, LIN Di, CHEN Jianwei, DI Wenning, LU Li, ZHU Lili. Multifunctional Properties and Device Applications of the Relaxor Ferroelectric Single Crystals[J]. Journal of Synthetic Crystals, 2021, 50(5): 783
Category:
Received: Apr. 13, 2021
Accepted: --
Published Online: Aug. 23, 2021
The Author Email: LUO Haosu (hsluo@mail.sic.ac.cn)
CSTR:32186.14.