Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237004(2025)

Efficient Multi-Scale Attention Decoding Method for Thyroid Nodule Segmentation Based on SwinTransCAD

Yunpeng Wang1, Jincao Yao2,3、***, Dong Xu2,3、**, and Xiang Hao1、*
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • 2Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang , China
  • 3Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310000, Zhejiang , China
  • show less
    Figures & Tables(6)
    SwinTransCAD model structure framework diagram. (a) Transformer encoder; (b) EM encoder; (c) SWT encoder; (d) EUCB; (e) MSCAM; (f) MSCB; (g) LGAG; (h) CAB; (i) SAB
    SwinTransCAD segmentation model results display
    Comparison of thyroid nodule segmentation performance of various models on the IRB-44 dataset. (a) Thyroid ultrasound image; (b) Swin Transformer model segmentation result; (c) Swin-UNet model segmentation result; (d) radiologist annotated ground truth; (e) SwinTransCAD model segmentation result; (f) U-Net model segmentation result
    ROC curves of five models
    • Table 1. Comparison of segmentation performance of multiple models across different datasets

      View table

      Table 1. Comparison of segmentation performance of multiple models across different datasets

      MethodDatasetSensitivityAccuracyDCAUC

      U-Net

      IRB-440.8830.9470.8630.948
      TN3K0.7960.8970.7880.892
      DDTI0.7540.8830.7450.881

      DeepLabV3+

      IRB-440.8530.9390.8780.946
      TN3K0.8480.9210.8330.923
      DDTI0.8200.9170.8140.921

      Swin Transformer

      IRB-440.8860.9510.8830.952
      TN3K0.8330.9130.8280.909
      DDTI0.8240.8990.8100.897

      SwinTransCAD

      IRB-440.9020.9620.9050.961
      TN3K0.8720.9390.8680.941
      DDTI0.8810.9520.8780.954
      TransUNetIRB-440.8830.9330.8810.933
      Swin-UNetIRB-440.8790.9120.8740.929
      UNeXtIRB-440.8810.9150.8710.921
    • Table 2. Ablation study results

      View table

      Table 2. Ablation study results

      ComponentAverage DC /%
      None88.33±0.3
      EMCAD88.48±0.2
      EMCAD+LGAG88.57±0.2
      EMCAD+MSCAM89.03±0.3
      EMCAD+LGAG+MSCAM89.62±0.3
    Tools

    Get Citation

    Copy Citation Text

    Yunpeng Wang, Jincao Yao, Dong Xu, Xiang Hao. Efficient Multi-Scale Attention Decoding Method for Thyroid Nodule Segmentation Based on SwinTransCAD[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 11, 2024

    Accepted: Dec. 12, 2024

    Published Online: Jun. 10, 2025

    The Author Email: Jincao Yao (yaojc@zjcc.org.cn), Dong Xu (xudong@zjcc.org.cn), Xiang Hao (haox@zju.edu.cn)

    DOI:10.3788/LOP242250

    CSTR:32186.14.LOP242250

    Topics