Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237004(2025)
Efficient Multi-Scale Attention Decoding Method for Thyroid Nodule Segmentation Based on SwinTransCAD
Fig. 1. SwinTransCAD model structure framework diagram. (a) Transformer encoder; (b) EM encoder; (c) SWT encoder; (d) EUCB; (e) MSCAM; (f) MSCB; (g) LGAG; (h) CAB; (i) SAB
Fig. 3. Comparison of thyroid nodule segmentation performance of various models on the IRB-44 dataset. (a) Thyroid ultrasound image; (b) Swin Transformer model segmentation result; (c) Swin-UNet model segmentation result; (d) radiologist annotated ground truth; (e) SwinTransCAD model segmentation result; (f) U-Net model segmentation result
|
Get Citation
Copy Citation Text
Yunpeng Wang, Jincao Yao, Dong Xu, Xiang Hao. Efficient Multi-Scale Attention Decoding Method for Thyroid Nodule Segmentation Based on SwinTransCAD[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237004
Category: Digital Image Processing
Received: Nov. 11, 2024
Accepted: Dec. 12, 2024
Published Online: Jun. 10, 2025
The Author Email: Jincao Yao (yaojc@zjcc.org.cn), Dong Xu (xudong@zjcc.org.cn), Xiang Hao (haox@zju.edu.cn)
CSTR:32186.14.LOP242250