Infrared and Laser Engineering, Volume. 51, Issue 1, 20211114(2022)
Optical fiber hydrogen sensing technology (Invited)
[1] Watson J, Ihokura K, Coles G. The tin dioxide gas sensor[J]. Measurement Science and Technology, 4, 711-719(1993).
[2] Buttner W J, Post M B, Burgess R, et al. An overview of hydrogen safety sensors and requirements[J]. International Journal of Hydrogen Energy, 36, 2462-2470(2011).
[3] Devine J C. A progress report: Cleaning up TMI[J]. IEEE Spectrum, 18, 44-49(1981).
[4] Blandford E D, Ahn J. Examining the nuclear accident at fukushima daiichi[J]. Elements, 8, 189-194(2012).
[5] Han C H, Hong D W, Kim I J, et al. Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor[J]. Sensors and Actuators B: Chemical, 128, 320-325(2007).
[6] Han C H, Hong D U, Gwak J, et al. A planar catalytic combustion sensor using nano-crystalline F-doped SnO2 as a supporting material for hydrogen detection[J]. Korean Journal of Chemical Engineering, 24, 927-931(2007).
[7] Diener P G, Obermeier E. Heat-conduction microsensor based on silicon technology for the analysis of two- and three-component gas mixtures[J]. Sensors and Actuators B: Chemical, 13, 345-347(1993).
[8] Simon I, Arndt M. Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications[J]. Sensors and Actuators A Physical, 97, 104-108(2002).
[9] Sakthivel M. A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: Engineering aspect[J]. International Journal of Hydrogen Energy, 33, 905-911(2008).
[10] Nikolova V, Nikolov I, Andreev P, et al. Tungsten carbide-based electrochemical sensors for hydrogen determination in gas mixtures[J]. Journal of Applied Electrochemistry, 30, 705-710(2000).
[11] Han C H, Han S D, Singh I, et al. Micro-bead of nano-crystalline F-doped SnO2 as a sensitive hydrogen gas sensor[J]. Sensors and Actuators B: Chemical, 109, 264-269(2005).
[12] Shukla S, Zhang P, Cho H J, et al. Room temperature hydrogen response kinetics of nano–micro-integrated doped tin oxide sensor[J]. Sensors and Actuators B: Chemical, 120, 573-583(2007).
[13] Wang G, Dai J, Yang M. Fiber-optic hydrogen sensors: A review[J]. IEEE Sensors Journal, 21, 12706-12718(2020).
[14] Zhang Y N, Peng H, Qian X, et al. Recent advancements in optical fiber hydrogen sensors[J]. Sensors and Actuators B Chemical, 244, 393-416(2017).
[15] Wicke E, Brodowsky H, Züchner H. Hydrogen in palladium and palladium alloys[J]. Metal Finishing, 95, 73-155(1996).
[16] Butler M A, Ginley D S. Hydrogen sensing with palladium‐coated optical fibers[J]. Journal of Applied Physics, 64, 3706-3712(1988).
[17] Armgarth M, Nylander C. Blister formation in Pd gate MIS hydrogen sensors[J]. IEEE Electron Device Letters, 3, 384-386(1983).
[18] Kalli K, Othonos A, Christofides C. Characterization of reflectivity inversion, α- and β-phase transitions and nanostructure formation in hydrogen activated thin Pd films on silicon based substrates[J]. Journal of Applied Physics, 91, 3829-3840(2002).
[19] Cui L J, Chen Y P, Gang Z. An optical fiber hydrogen sensor with Pd/Ag film[J]. Optoelectronics Letters, 5, 220-223(2009).
[20] [20] Fang Y, Duan F, Zhang M, et al. PdAg film coated LPG f hydrogen sensing [C]SPIE, 2012, 8409: 840935.
[21] Liu Y, Chen Y P, Song H, et al. Characteristics of an optical fiber hydrogen gas sensor based on a palladium and yttrium alloy thin film[J]. IEEE Sensors Journal, 13, 2699-2704(2013).
[22] Zhao Z, Carpenter M A, Xia H, et al. All-optical hydrogen sensor based on a high alloy content palladium thin film[J]. Sensors and Actuators B: Chemical, 113, 532-538(2006).
[23] Hughes R C, Schubert W K. Thin films of Pd/Ni alloys for detection of high hydrogen concentrations[J]. Journal of Applied Physics, 71, 542-544(1992).
[24] Dai J, Zhu L, Wang G, et al. Optical fiber grating hydrogen sensors: A review[J]. Sensors, 17, 577(2017).
[25] Xu B, Zhao C L, Yang F, et al. Sagnac interferometer hydrogen sensor based on panda fiber with Pt-loaded WO3/SiO2 coating[J]. Optics Letters, 41, 1594-1597(2016).
[26] Park S, Kim H, Jin C, et al. Enhanced CO gas sensing properties of Pt-functionalized WO3 nanorods[J]. Thermochimica Acta, 542, 69-73(2012).
[27] Zeng W, Dong C, Miao B, et al. Preparation, characterization and gas sensing properties of sub-micron porous WO3 spheres[J]. Materials Letters, 117, 41-44(2014).
[28] Tabassum R, Gupta B D. Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite[J]. Applied Optics, 54, 1032-1040(2015).
[29] Hosoki A, Nishiyama M, Igawa H, et al. A hydrogen curing effect on surface plasmon resonance fiber optic hydrogen sensors using an annealed Au/Ta2O5/Pd multi-layers film[J]. Optics Express, 22, 18556-18563(2014).
[30] Downes F, Taylor C M. Theoretical investigation of a multi-channel optical fiber surface plasmon resonance hydrogen sensor[J]. Optics Communications, 490, 126916(2021).
[31] Yan A, Chen R, Zaghloul M, et al. Sapphire fiber optical hydrogen sensors for high-temperature environments[J]. IEEE Photonics Technology Letters, 28, 47-50(2015).
[32] Yahya N A M, Hamid M R Y, Ibrahim S A, et al. H2 sensor based on tapered optical fiber coated with MnO2 nanostructures[J]. Sensors and Actuators B: Chemical, 246, 421-427(2017).
[33] Yu Z P, Jin L, Sun L P, et al. Highly sensitive fiber taper interferometric hydrogen sensors[J]. IEEE Photonics Journal, 8, 6800309(2016).
[34] Mikami M, Komatsu D, Hosoki A, et al. Quick response hydrogen LSPR sensor based on hetero-core fiber structure with Palladium nano-particles[J]. Optics Express, 29, 48-58(2020).
[35] Du B, He J, Yang M, et al. Highly sensitive hydrogen sensor based on in-fiber Mach-Zehnder interferometer with polymer infiltration and Pt-loaded WO3 coating[J]. Optics Express, 29, 4147-4158(2021).
[36] Xu B, Zhao F P, Wang D, et al. Tip hydrogen sensor based on liquid filled in-fiber Fabry-Perot interferometer with Pt-loaded WO3 coating[J]. Measurement Science and Technology, 31, 125107(2020).
[37] Fisser M, Badcock R A, Teal P D, et al. High-sensitivity fiber-optic sensor for hydrogen detection in gas and transformer oil[J]. Sensors Journal, IEEE, 19, 3348-3357(2019).
[38] Ma J, Zhou Y, Bai X, et al. High-sensitivity and fast-response fiber-tip Fabry-Perot hydrogen sensor with suspended palladium-decorated graphene[J]. Nanoscale, 11, 15821-15827(2019).
[39] Xiong C, Zhou J, Liao C, et al. Fiber-tip polymer microcantilever for fast and highly sensitive hydrogen measurement[J]. ACS Applied Materials and Interfaces, 12, 33163-33172(2020).
[40] Butler M A. Optical fiber hydrogen sensor[J]. Applied Physics Letters, 45, 1007(1984).
[41] Yang Y, Yang F, Wang H, et al. Temperature-insensitive hydrogen sensor with polarization-maintaining photonic crystal fiber-based sagnac interferometer[J]. Journal of Lightwave Technology, 33, 2566-2571(2015).
[42] [42] Zeakes J S, Murphy K A, ElshabiniRiad A, et al. Modified extrinsic FabryPerot interferometric hydrogen gas sens [C]IEEE Lasers Electrooptics Society Meeting, 1994: 235236.
[43] Yang Z, Zhang M, Liao Y, et al. Extrinsic Fabry-Perot interferometric optical fiber hydrogen detection system[J]. Applied Optics, 49, 2736-2740(2010).
[44] Karanja J M, Dai Y, Zhou X, et al. Micro-structured femtosecond laser assisted FBG hydrogen sensor[J]. Optics Express, 23, 31034(2015).
[45] Sutapun B, Tabib Azar M, Kazemi A. Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing[J]. Sensors and Actuators B: Chemical, 60, 27-34(1999).
[46] Xian Z, Dai Y, Karanja J M, et al. Microstructured FBG hydrogen sensor based on Pt-loaded WO3[J]. Optics Express, 25, 8777(2017).
[47] Butler M A. Fiber optic sensor for hydrogen concentrations near the explosive limit[J]. Journal of the Electrochemical Society, 138, L46(1991).
[48] Liu Y, Chen Y P, Song H, et al. Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film[J]. Review of Scientific Instruments, 83, 075001(2012).
[49] [49] Tabib Azar M, Sutapun B, Petrick R, et al. Highly sensitive hydrogen senss using palladium coated fiber optics with exposed ces evanescent field interactions [C]Proceedings of SPIE, 1998, 56(1): 158163.
[50] Cao R, Wu J, Liang G, et al. Functionalized PdAu alloy on nanocones fabricated on optical fibers for hydrogen sensing[J]. IEEE Sensors Journal, 20, 1922-1927(2019).
[51] Bévenot X, Trouillet A, Veillas C, et al. Surface plasmon resonance hydrogen sensor using an optical fibre[J]. Measurement Science and Technology, 13, 118-124(2001).
[52] [52] Kim Y H, Kim M J, Rho B S, et al. MachZehnder interferometric hydrogen sens based on a single mode fiber having ce structure modification at two sections [C]IEEE Senss, 2010: 14831486.
[53] Yu C, Li L, Chen X, et al. Fiber-optic Fabry-Perot hydrogen sensor coated with Pd-Y film[J]. Photonic Sensors, 5, 142-145(2015).
[54] Caucheteur C, Debliquy M, Lahem D, et al. Catalytic fiber Bragg grating sensor for hydrogen leak detection in air[J]. IEEE Photonics Technology Letters, 20, 96-98(2008).
[55] Dai J, Yang M, Zhi Y, et al. Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating[J]. Sensors and Actuators B: Chemical, 190, 657-663(2014).
[56] Wang Y, Yang M, Zhang G, et al. Fiber optic hydrogen sensor based on Fabry-Perot interferometer coated with Sol-Gel Pt/WO3 coating[J]. Journal of Lightwave Technology, 33, 2530-2534(2015).
[57] [57] Liao Y, Dai J, Yang M, et al. Comparison of sidepolished fiber Bragg grating hydrogen senss sputtered with PdAg PdY composite films [C]SPIE, 2012, 8421: 842162.
[58] Wang M, Yang M, Cheng J, et al. Fabry-Pérot interferometer sensor fabricated by femtosecond laser for hydrogen sensing[J]. IEEE Photonics Technology Letters, 25, 713-716(2013).
[59] Cao R, Yang Y, Wang M, et al. Multiplexable intrinsic Fabry-Perot interferometric fiber sensors for multipoint hydrogen gas monitoring[J]. Optics Letters, 45, 3163-3166(2020).
[60] Dai J X, Yang M H, Yu X, et al. Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material[J]. Sensors and Actuators B: Chemical, 174, 253-257(2012).
[61] Silva S, Coelho L, Almeida J M, et al. H2 sensing based on a Pd-coated tapered-FBG fabricated by DUV femtosecond laser technique[J]. IEEE Photonics Technology Letters, 25, 401-403(2013).
[62] Meng Z, Dai Y, Xian Z, et al. Femtosecond laser ablated FBG with composite microstructure for hydrogen sensor application[J]. Sensors, 16, 2040(2016).
[64] Park K S, Kim Y H, Eom J B, et al. Compact and multiplexible hydrogen gas sensor assisted by self-referencing technique[J]. Optics Express, 19, 18190-18198(2011).
[65] Sekimoto S, Nakagawa H, Okazaki S, et al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium- supported tungsten oxide[J]. Sensors and Actuators B, 66, 142-145(2000).
[66] Yahya N, Hamid M, Ong B H, et al. H2 gas sensor based on Pd/ZnO nanostructures deposited on tapered optical fiber[J]. IEEE Sensors Journal, 20, 2982-2990(2020).
[67] Perrotton C, Westerwaal R J, Javahiraly N, et al. A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance[J]. Optics Express, 21, 382-390(2013).
[68] Wang X, Tang Y, Zhou C, et al. Theoretical investigation of a dual-channel optical fibre surface plasmon resonance hydrogen sensor based on wavelength modulation[J]. Measurement Science and Technology, 24, 065102(2013).
[69] Yan H, Zhao X, Zhang C, et al. A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end-face[J]. Optics Communications, 359, 157-161(2016).
[70] Sun Zhiqiang, Liu Zexu, Xiao Yike, et al. Thermal stability of optical fiber metal organic framework based on graphene oxide and nickel and its hydrogen adsorption application[J]. Optics Express, 26, 31648-31656(2018).
[71] Zhou F, Qiu S J, Luo W, et al. An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer[J]. IEEE Sensors Journal, 14, 1133-1136(2014).
[72] Trouillet A, Marin E, Veillas C. Fibre gratings for hydrogen sensing[J]. Measurement Science and Technology, 17, 1124-1128(2006).
[73] Kim Y H, Kim M J, Rho B S, et al. Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode[J]. IEEE Sensors Journal, 11, 1423-1426(2011).
[74] Yang M, Wang G, Dai J, et al. Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm[J]. Measurement Science and Technology, 25, 114004(2014).
[75] Bao H, Jin W, Miao Y, et al. Laser-induced dispersion with stimulated Raman scattering in gas-filled optical fiber[J]. Journal of Lightwave Technology, 37, 2120-2125(2019).
[76] Uemiya S, Matsuda T, Kikuchi E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics[J]. Journal of Membrane Science, 56, 315-325(1991).
[77] Zhao Z, Sevryugina Y, Carpenter M A, et al. All-optical hydrogen-sensing materials based on tailored palladium alloy thin films[J]. Analytical Chemistry, 76, 6321-6326(2004).
[78] Ma G M, Jiang J, Li C R, et al. Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers[J]. Review of Scientific Instruments, 86, 226-232(2015).
[79] [79] Yuan Z, Ma Y, Qin Y, et al. Improved perfmance of fiberoptic hydrogen sens based on MgTi alloys composite thin films [C]Proceedings of the 18 th International Conference on Optical Communications wks, 2019: 978.
[80] Hosoki A, Nishiyama M, Sakurai N, et al. Long-term hydrogen detection using a hetero-core optical fiber structure featuring Au/Ta2O5/Pd/Pt multilayer films[J]. IEEE Sensors Journal, 20, 227-233(2019).
[81] Zhang C, Shen C, Liu X, et al. Pd/Au nanofilms based tilted fiber Bragg grating hydrogen sensor[J]. Optics Communications, 502, 127424(2021).
[82] Wang G, Qin Y, Dai J, et al. Performance-enhanced optical fiber hydrogen sensors based on WO3-Pd2Pt-Pt composite film with controlled optical heating[J]. Optical Fiber Technology, 52, 101979(2019).
[83] Ohodnicki P R, Baltrus J P, Brown T D. Pd/SiO2 and AuPd/SiO2 nanocomposite based optical fiber sensors for H2 sensing applications[J]. Sensors and Actuators B: Chemical, 214, 159-168(2015).
[84] Sun C, Ohodnicki P R, Yang Y. Double-layer zeolite nano-blocks and palladium-based nanocomposite fiber optic sensors for selective hydrogen sensing at room temperature[J]. IEEE Sensors Letters, 1, 1-4(2017).
[85] Mfa B, Rab A, Pdt B, et al. Optimizing the sensitivity of palladium based hydrogen sensors[J]. Sensors and Actuators B: Chemical, 259, 10-19(2018).
[86] Yang M, Yan S, Zhang D, et al. Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors[J]. Sensors and Actuators B: Chemical, 143, 750-753(2010).
[87] Li H, Yang Y H, Lu L, et al. Practical reflective birefringent fiber interferometer sensor[J]. Applied Optics, 58, 7862-7867(2019).
[90] Yang M, Zhi Y, Dai J, et al. Fiber optic hydrogen sensors with sol–gel WO3 coatings[J]. Sensors and Actuators B: Chemical, 166-167, 632-636(2012).
Get Citation
Copy Citation Text
Hui Li, Yuanhong Yang. Optical fiber hydrogen sensing technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20211114
Category: Optical communication and sensing
Received: Dec. 28, 2021
Accepted: --
Published Online: Mar. 8, 2022
The Author Email: