Photonics Research, Volume. 10, Issue 9, 2140(2022)
Generation of single solitons tunable from 3 to 3.8
[1] S. D. Jackson. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics, 6, 423-431(2012).
[2] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).
[3] S. Amini-Nik, D. Kraemer, M. L. Cowan, K. Gunaratne, P. Nadesan, B. A. Alman, R. J. D. Miller. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery. PLoS ONE, 5, e13053(2010).
[4] A. H. Nejadmalayeri, P. R. Herman. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett., 30, 964-966(2005).
[5] S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, R. Vallée. Femtosecond fiber lasers reach the mid-infrared. Optica, 2, 623-626(2015).
[6] Z. Qin, G. Xie, H. Gu, T. Hai, P. Yuan, J. Ma, L. Qian. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse. Adv. Photonics, 1, 065001(2019).
[7] S. Antipov, D. D. Hudson, A. Fuerbach, S. D. Jackson. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window. Optica, 3, 1373-1376(2016).
[8] Y. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, R. Vallée. Ultrafast Dy3+:fluoride fiber laser beyond 3 μm. Opt. Lett., 44, 395-398(2019).
[9] N. Bawden, O. Henderson-Sapir, S. D. Jackson, D. J. Ottaway. Ultrafast 3.5 μm fiber laser. Opt. Lett., 46, 1636-1639(2021).
[10] F. M. Mitschke, L. F. Mollenauer. Discovery of the soliton self-frequency shift. Opt. Lett., 11, 659-661(1986).
[11] F. Jobin, P. Paradis, Y. O. Aydin, T. Boilard, V. Fortin, J. Gauthier, M. Lemieux-Tanguay, S. Magnan-Saucier, L. Michaud, S. Mondor, L. Pleau, L. Talbot, M. Bernier, R. Vallée. Recent developments in lanthanide-doped mid-infrared fluoride fiber lasers. Opt. Express, 30, 8615-8640(2022).
[12] F. Liu, J. Li, H. Luo, Q. Wu, X. Wu, F. Ouellette, Y. Liu. Study on soliton self-frequency shift in a Tm-doped fiber amplifier seeded by a Kelly-sideband-suppressed conventional soliton. Opt. Express, 29, 6553-6562(2021).
[13] M. Y. Koptev, E. A. Anashkina, A. V. Andrianov, V. V. Dorofeev, A. F. Kosolapov, S. V. Muravyev, A. V. Kim. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber. Opt. Lett., 40, 4094-4097(2015).
[14] Y. Tang, L. G. Wright, K. Charan, T. Wang, C. Xu, F. W. Wise. Generation of intense 100 fs solitons tunable from 2 to 4.3 μm in fluoride fiber. Optica, 3, 948-951(2016).
[15] S. Duval, J. Gauthier, L. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, R. Vallée. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 μm. Opt. Lett., 41, 5294-5297(2016).
[16] I. Alamgir, M. H. M. Shamim, W. Correr, Y. Messaddeq, M. Rochette. Mid-infrared soliton self-frequency shift in chalcogenide glass. Opt. Lett., 46, 5513-5516(2021).
[17] N. Nagl, K. F. Mak, Q. Wang, V. Pervak, F. Krausz, O. Pronin. Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers. Opt. Lett., 44, 2390-2393(2019).
[18] Y. Zhou, Z. Qin, P. Yuan, J. Ma, G. Xie. 2-MW peak-power pulses from a dispersion-managed fluoride fiber amplifier at 2.8 μm. Opt. Lett., 46, 5104-5107(2021).
[19] J. Huang, M. Pang, X. Jiang, F. Köttig, D. Schade, W. He, M. Butryn, P. St.J. Russell. Sub-two-cycle octave-spanning mid-infrared fiber laser. Optica, 7, 574-579(2020).
[20] L. Yu, J. Liang, S. Huang, J. Wang, J. Wang, X. Luo, P. Yan, F. Dong, X. Liu, Q. Lue, C. Guo, S. Ruan. Average-power (4.13 W) 59 fs mid-infrared pulses from a fluoride fiber laser system. Opt. Lett., 47, 2562-2565(2022).
[21] M. R. Majewski, S. D. Jackson, R. Woodward. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm. Opt. Lett., 43, 971-974(2018).
[22] V. Fortin, F. Jobin, M. Larose, M. Bernier, R. Vallée. 10-W-level monolithic dysprosium-doped fiber laser at 3.24 μm. Opt. Lett., 44, 491-494(2019).
[23] M. R. Majewski, M. Z. Amin, T. Berthelot, S. D. Jackson. Directly diode-pumped mid-infrared dysprosium fiber laser. Opt. Lett., 44, 5549-5552(2019).
[24] L. Gomes, A. F. H. Librantz, S. D. Jackson. Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass. J. Appl. Phys., 107, 053103(2010).
[25] G. P. Agrawal. Nonlinear Fiber Optics(2007).
[26] A. W. Snyder, J. Love. Optical Waveguide Theory(2012).
[27] F. Gan. Optical properties of fluoride glasses: a review. J. Non-Cryst. Solids, 184, 9-20(1995).
[28] S. Tong, X. Chen, J. Li, P. Qiu, K. Wang. Elliptically-polarized soliton self-frequency shift in isotropic optical fiber. J. Lightwave Technol., 39, 1334-1339(2021).
[29] F. Lu, Q. Lin, W. H. Knox, G. P. Agrawal. Vector soliton fission. Phys. Rev. Lett., 93, 183901(2004).
[30] H. Ren, K. Xia, J. Wang, S. Ge, T. Huang, P. Yang, P. Xu, S. Mo, M. Qiu, S. Bai, F. Chen, S. Dai, Q. Nie. The polarization-aided tunable high-power femtosecond Raman solitons generation from 1.96 to 3.1 μm in fibers cascaded system. Opt. Laser Technol., 150, 107934(2022).
Get Citation
Copy Citation Text
Linpeng Yu, Jinhui Liang, Shiting Huang, Jinzhang Wang, Jiachen Wang, Xing Luo, Peiguang Yan, Fanlong Dong, Xing Liu, Qitao Lue, Chunyu Guo, Shuangchen Ruan, "Generation of single solitons tunable from 3 to 3.8
Category: Lasers and Laser Optics
Received: May. 10, 2022
Accepted: Jul. 6, 2022
Published Online: Aug. 29, 2022
The Author Email: Chunyu Guo (cyguo@szu.edu.cn)