Chinese Journal of Lasers, Volume. 49, Issue 5, 0507301(2022)

Research on Adaptability of Brain Activation Degree via Near Infrared Spectroscopy Under Motor Imagery Task

Chenyang Gao1, Jia Xiu1, and Ting Li1,2、*
Author Affiliations
  • 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin 300192, China
  • 2Chinese Institute for Brain Research, Beijing 102206, China
  • show less
    References(27)

    [1] Vavadi H, Mostafa A, Zhou F F et al. Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging[J]. Journal of Biomedical Optics, 24, 021203(2018).

    [2] Pinti P L, Tachtsidis I, Hamilton A et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Annals of the New York Academy of Sciences, 1464, 5-29(2020).

    [3] Liu Z M, Shore J, Wang M et al. A systematic review on hybrid EEG/fNIRS in brain-computer interface[J]. Biomedical Signal Processing and Control, 68, 102595(2021).

    [4] Perrey S. Non-invasive NIR spectroscopy of human brain function during exercise[J]. Methods, 45, 289-299(2008).

    [5] Ferreri L, Bigand E, Perrey S et al. The promise of near-infrared spectroscopy (NIRS) for psychological research: a brief review[J]. L’Année Psychologique, 114, 537-569(2014).

    [6] Li H Y, Fu Y F. Functional near-infrared spectroscopy-based brain-computer interface[J]. Laser & Optoelectronics Progress, 58, 1600006(2021).

    [7] Ekkekakis P. Illuminating the black box: investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy[J]. Journal of Sport & Exercise Psychology, 31, 505-553(2009).

    [8] Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function[J]. Trends in Neurosciences, 20, 435-442(1997).

    [9] Khan R, Naseer N, Nazeer H et al. Control of a prosthetic leg based on walking intentions for gait rehabilitation: an fNIRS study[J]. Frontiers in Human Neuroscience, 12, 144(2018).

    [10] Nicolas-Alonso L F, Gomez-Gil J. Brain computer interfaces, a review[J]. Sensors, 12, 1211-1279(2012).

    [11] Rashid M, Sulaiman N, Majeed A P P A et al. Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review[J]. Frontiers in Neurorobotics, 14, 25(2020).

    [12] Mellinger J, Schalk G, Braun C et al. An MEG-based brain-computer interface (BCI)[J]. NeuroImage, 36, 581-593(2007).

    [13] Ravindran A, Rieke J D, Zapata J D A et al. Four methods of brain pattern analyses of fMRI signals associated with wrist extension versus wrist flexion studied for potential use in future motor learning BCI[J]. PLoS One, 16, e0254338(2021).

    [14] Liu Y, Liu D Y, Zhang Y et al. A portable fNIRS-topography system for BCI applications: full parallel detection and pilot paradigm validation[J]. Chinese Journal of Lasers, 48, 1107001(2021).

    [15] Jiang J, Jiao X J, Pan J J et al. Assessment of mental workload influenced by different emotional state using fNIRS[J]. Acta Optica Sinica, 36, 0517001(2016).

    [16] Zhao J, Qiao J R M T, Ding X T et al. fNIRS signal motion correction algorithm based on mathematical morphology and Median filter[J]. Acta Optica Sinica, 40, 2230002(2020).

    [17] Gratton G, Fabiani M. The event-related optical signal: a new tool for studying brain function[J]. International Journal of Psychophysiology, 42, 109-121(2001).

    [18] Leff D R, Orihuela-Espina F, Elwell C E et al. Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies[J]. NeuroImage, 54, 2922-2936(2011).

    [19] Pan B A, Huang C, Fang X et al. Noninvasive and sensitive optical assessment of brain death[J]. Journal of Biophotonics, 12, e201800240(2019).

    [20] Li T, Li L, Du P et al. Pinpoint source localization for ocular nonselective attention with combination of erp and fniri measurements[J]. Journal of Innovative Optical Health Sciences, 1, 195-206(2008).

    [21] Naseer N, Hong K S. fNIRS-based brain-computer interfaces: a review[J]. Frontiers in Human Neuroscience, 9, 3(2015).

    [22] Basura G J, Hu X S, Juan J S et al. Human central auditory plasticity: a review of functional near-infrared spectroscopy (fNIRS) to measure cochlear implant performance and tinnitus perception[J]. Laryngoscope Investigative Otolaryngology, 3, 463-472(2018).

    [23] Pinti P L, Aichelburg C, Gilbert S et al. A review on the use of wearable functional near-infrared spectroscopy in naturalistic environments[J]. The Japanese Psychological Research, 60, 347-373(2018).

    [24] Liu Y, Liu D Y, Zhang Y et al. A portable fNIRS-topography system for BCI applications: full parallel detection and pilot paradigm validation[J]. Chinese Journal of Lasers, 48, 1107001(2021).

    [25] Liu D Y, Zhang Y, Liu Y et al. LSTM-based recurrent neural network for noise suppression in fNIRS neuroimaging: network design and pilot validation[J]. Chinese Journal of Lasers, 48, 1918007(2021).

    [26] Wang D, Miao D Q, Blohm G. Multi-class motor imagery EEG decoding for brain-computer interfaces[J]. Frontiers in Neuroscience, 6, 151(2012).

    [27] Zhang Z X, Sun B L, Gong H et al. A fast neuronal signal-sensitive continuous-wave near-infrared imaging system[J]. Review of Scientific Instruments, 83, 094301(2012).

    Tools

    Get Citation

    Copy Citation Text

    Chenyang Gao, Jia Xiu, Ting Li. Research on Adaptability of Brain Activation Degree via Near Infrared Spectroscopy Under Motor Imagery Task[J]. Chinese Journal of Lasers, 2022, 49(5): 0507301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Oct. 19, 2021

    Accepted: Jan. 14, 2022

    Published Online: Mar. 9, 2022

    The Author Email: Li Ting (liting@bme.cams.cn)

    DOI:10.3788/CJL202249.0507301

    Topics