Optics and Precision Engineering, Volume. 33, Issue 10, 1638(2025)

Optical remote sensing road extraction network with directional guidance and topological awareness

Yuebo MENG1,2、*, Xinyu HUANG1,2, Shilong SU1,2, and Heng WANG1,2
Author Affiliations
  • 1College of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an70055,China
  • 2Key Laboratory of Construction Robots for Higher Education in Shaanxi Province, Xi'an710055,China
  • show less
    Figures & Tables(23)
    Overall structure of RDTA-Net
    Connection mask reasoning process
    Multi-Path Directional Guidance Module
    Full granular complementary feature fusion module
    Schematic diagram of topology-aware loss function
    Examples of persistent homology
    Road extraction results of various models in DeepGlobe dataset
    Road extraction results of each model in Massachusetts datase
    Visualization results of ablation experiment
    Influence of different optimizers on model performance
    Generalization test results
    • Table 1. Reasoning about road connectivity

      View table
      View in Article

      Table 1. Reasoning about road connectivity

      算法1:道路连通关系的推理步骤

      Input:road_mask(H×W) #传统分割掩码

      Output:connectivity_mask GH×W×8) #8方向连通掩码

      1:  G←ZeroTensor(HW,8) #初始化G,形状为(HW,8),所有元素设为0

      2:  d←[(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)] #定义8个方向的相对偏移(dxdy

      3:  x←0

      4:  whilex <H

      5:   y←0

      6:    whiley<W

      7:   if road_mask[xy]==1 # 仅处理道路像素

      8:   d = 0

      9:   while d < 8

      10:   dxdy←directions[d] # 获取方向偏移

      11:   nx=x+dx

      12:   ny=y+dy # 计算邻居坐标

      13:   if 0 ≤nx<H and 0≤ny<W and road_mask[nxny]==1 # 检查邻居是否在图像边界内且为道路

      14:   Gxyd]=1 # 方向d处连通

      15:   end

      16:   dd+1 # 处理下一个方向

      17:   end

      18:   yy+1 #处理下一个列

      19:   end

      20:   x=x+1 # 处理下一行

      21:  end

      22:  Return G # 返回方向连通掩码

    • Table 2. Multi-path directional guidance algorithm

      View table
      View in Article

      Table 2. Multi-path directional guidance algorithm

      算法2:多路径方向引导算法

      Input:特征图E5i,j表示各像素位置,HeWe代表E5的高度与宽度,

      Output:方向感知特征图EMDG

      Step 1: dconσW2δW11He×Wei=1Hej=1WeE5i,j #计算多种方向之间的依赖关系,得到方向向量dconW1表示卷积,δσ分别表示ReLu与Sigmoid激活函数

      Step 2:按照道路八向关系将dconE5进行通道切片,得到dconjE5jj1,2,,8

      Step 3:For j to 8 #为各方向构建特定学习路径,给予各方向不同的关注度

      Step 3.1:E5jConvCPAME5j+CCAME5j #捕获空间、通道维度依赖关系

      Step 3.2: EconjW3jFcdconj,E5j'+E5j #根据dconj中该方向的重要性,引导网络给予各方向不同的关注度,Fc表示通道乘法,W3j表示卷积

      Step 4:EMDG=ConvconcatEcon1,Econ2,Econ8 #将各方向输出E5j按通道进行拼接,得到方向感知特征图EMDG,算法结束

    • Table 3. Calculation process of TALoss

      View table
      View in Article

      Table 3. Calculation process of TALoss

      算法2:拓扑感知损失函数步骤

      Input:预测结果O,标签G

      Output:TALoss

      Step 1:计算尺度参数ε变化期间的复形序列ONGN

      Step 1.1:寻找OG中不同维度的拓扑特征点(εbi,εdi),并表示为持续条形码PHik(G)PHik(O) #εbiεdi分别代表第i个特征点的出生时间与死亡时间,k0,1,2,表示特征维度

      Step 1.2:利用PHik(G)PHik(O),计算持久图PDOkPDGk

      Step 1.3:LPDk←Hausdorff(PDOkPDGk) #利用平均Hausdorff距离计算预测路网与真实路网的拓扑相似度

      Step 2: LPDLPD0+LPD1 #统计两个维度的拓扑差异

      Step 3:TALoss←LPD+LBCE #联合像素级损失与拓扑损失,得到TALoss

    • Table 4. Confusion matrix

      View table
      View in Article

      Table 4. Confusion matrix

      样本预测为道路预测为背景
      真实道路TPFN
      真实背景FPTN
    • Table 5. Quantitative evaluation results on the DeepGlobe dataset

      View table
      View in Article

      Table 5. Quantitative evaluation results on the DeepGlobe dataset

      MethodsPrecisionRecallF1-scoreIoU
      FCN70.5373.6572.0656.32
      SegNet69.6078.1773.6458.28
      U-Net72.7077.6675.1060.12
      PSPNet66.2779.4872.2856.47
      D-LinkNet74.6480.0377.2464.55
      SDUNet78.4074.2079.4066.80
      RADANet//73.67/
      CoANet//81.2268.37
      BDTNet84.1876.7780.3067.09
      CR-HR-RoadNet76.4777.1276.7962.33
      SASwin Transformer80.9777.5679.2365.60
      CFRNet81.0379.7780.4067.22
      RDTA-Net80.6983.2681.9569.35
    • Table 6. Quantitative evaluation results on the Massachusetts dataset

      View table
      View in Article

      Table 6. Quantitative evaluation results on the Massachusetts dataset

      MethodsPrecisionRecallF1-scoreIoU
      FCN68.5268.9468.7352.16
      SegNet74.3377.1475.7160.32
      U-Net75.8178.7377.2462.54
      PSPNet75.9277.3376.6161.49
      D-LinkNet76.9978.2277.6063.45
      CR-HR-RoadNet80.3476.1578.1964.19
      SASwin Transformer80.0277.6578.8265.04
      CADUNet79.4576.5577.8964.12
      SGCN84.8273.9178.9965.28
      DDU-Net82.5473.9978.0363.98
      CRAENet81.2177.4878.4865.72
      D-FusionNet//78.1164.08
      RDTA-Net79.9180.0579.9866.38
    • Table 7. DeepGlobe ablation experiment results

      View table
      View in Article

      Table 7. DeepGlobe ablation experiment results

      ModelBaselineMDGFGCLBCELTAPrecision/%Recall/%F1-score/%IoU/%
      Model175.0879.1177.0463.08
      Model276.6780.2278.4065.28
      Model377.1879.8278.4865.36
      Model478.8381.5380.1667.04
      Model580.6983.2681.9569.35
    • Table 8. Massachusetts ablation experiment results

      View table
      View in Article

      Table 8. Massachusetts ablation experiment results

      ModelBaselineMDGFGCLBCELTAPrecision/%Recall/%F1-score/%IoU/%
      Model176.1179.0377.5463.18
      Model277.2379.4278.3164.26
      Model377.6279.1278.3664.33
      Model478.8079.5479.1765.79
      Model579.9180.0579.9866.38
    • Table 9. Impact of different loss functions on road extraction

      View table
      View in Article

      Table 9. Impact of different loss functions on road extraction

      MethodsLossPrecision/%Recall/%F1-score/%IoU/%β0 errorβ1 error
      FCNLBCE70.5373.6572.0656.321.8161.738
      clDice71.2174.3072.7256.961.7151.639
      LTA72.1475.7473.9058.601.5221.396
      SegNetLBCE69.6078.1773.6458.281.5841.483
      clDice70.1378.8274.2258.691.4891.317
      LTA70.9279.2574.8559.261.3291.218
      U-NetLBCE72.7077.6675.1060.121.2741.143
      clDice73.5678.4975.9561.071.1831.085
      LTA74.3579.3876.7962.321.0770.942
      PSPNetLBCE66.2779.4872.2856.471.7641.681
      clDice67.0679.9372.9357.431.6921.590
      LTA68.2280.5273.8658.961.4511.264
      RDTA-NetLBCE78.8381.5380.1667.040.7080.691
      clDice79.2882.3780.8067.850.6430.617
      LTA80.6983.2681.9569.350.5410.581
    • Table 10. Time consuming comparison of loss function calculation

      View table
      View in Article

      Table 10. Time consuming comparison of loss function calculation

      MethodsLossIoU/%Training time/s
      RDTA-NetBCE67.040.226
      RDTA-NetclDice67.850.279
      RDTA-NetTALoss69.350.305
    • Table 11. Quantitative experimental analysis in different scenarios

      View table
      View in Article

      Table 11. Quantitative experimental analysis in different scenarios

      Methods遮挡情况噪声干扰光照变化
      F1-scoreIoUF1-scoreIoUF1-scoreIoU
      FCN62.2548.8361.1447.2661.2248.07
      SegNet67.1954.4166.2354.0365.6953.82
      U-Net68.9155.0267.6854.8767.3454.71
      D-LinkNet71.5157.1771.2556.5470.6155.58
      RDTA-Net73.4261.6372.8660.3872.4760.26
    • Table 12. Complexity Analysis

      View table
      View in Article

      Table 12. Complexity Analysis

      MethodsParamsFLOPsFPSTraining time
      FCN15.3180.47850.156
      SegNet18.8297.11780.173
      U-Net31.04150.85640.195
      PSPNet53.32218.61310.379
      D-LinkNet31.1157.99690.218
      SDUNet80.24314.54320.462
      RDTA-Net47.26194.72530.305
    Tools

    Get Citation

    Copy Citation Text

    Yuebo MENG, Xinyu HUANG, Shilong SU, Heng WANG. Optical remote sensing road extraction network with directional guidance and topological awareness[J]. Optics and Precision Engineering, 2025, 33(10): 1638

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 10, 2024

    Accepted: --

    Published Online: Jul. 23, 2025

    The Author Email: Yuebo MENG (mengyuebo@163.com)

    DOI:10.37188/OPE.20253310.1638

    Topics