Chinese Journal of Lasers, Volume. 44, Issue 2, 201003(2017)

Progress on High-Power Ultrashort-Pulsed Thulium-Doped Fiber Lasers

Liu Jiang, Tan Fangzhou, Liu Chen, and Wang Pu
Author Affiliations
  • [in Chinese]
  • show less
    References(60)

    [1] [1] Mingareev I, Weirauch F, Olowinsky A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 2012, 44(7): 2095-2099.

    [2] [2] Hardy L A, Wilson C R, Irby P B, et al. Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0902604.

    [3] [3] Honea E, Savage-Leuchs M, Bowers M S, et al. Pulsed blue laser source based on frequency quadrupling of a thulium fiber laser[J]. SPIE, 2013, 8601: 860111.

    [4] [4] Gather M C, Yun S H. Single-cell biological lasers[J]. Nature Photonics, 2011, 5(7): 406-410.

    [5] [5] Popmintchev T, Chen M C, Arpin P, et al. The attosecond nonlinear optics of bright coherent X-ray generation[J]. Nature Photonics, 2010, 4(2): 822-832.

    [6] [6] Agrawal G. Nonlinear Fiber Optics[M]. Newyork: Academic Press, 2001.

    [7] [7] Kelly S M. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 1992, 28(8): 806-807.

    [8] [8] Dennis M L, Duling I N. Experimental study of sideband generation in femtosecond fiber lasers[J]. IEEE Journal of Quantum Electronics, 1994, 30(6): 1469-1477.

    [9] [9] Cautaerts V, Richardson D J, Paschotta R, et al. Stretched pulse Yb3+: silica fiber laser[J]. Optics Letters, 1997, 22(5): 316-318.

    [10] [10] Tamura K, Ippen E P, Haus H A. Pulse dynamics in stretched-pulse fiber lasers[J]. Applied Physics Letters, 1995, 67(2): 158-160.

    [11] [11] Lim H, Ilday F , Wise F W. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser[J]. Optics Letters, 2003, 28(8): 660-662.

    [12] [12] Orta B, Hideur A, Chartier T, et al. 90-fs stretched-pulse ytterbium-doped double-clad fiber laser[J]. Optics Letters, 2003, 28(15): 1305-1307.

    [13] [13] Orta B, Limpert J, Tünnermann A. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime[J]. Optics Letters, 2007, 32(15): 2149-2151.

    [14] [14] Chong A, Renninger W H, Wise F W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ[J]. Optics Letters, 2007, 32(16): 2408-2410.

    [15] [15] Hübner P, Kieleck C, Jackson S D, et al. High-power actively mode-locked sub-nanosecond Tm3+-doped silica fiber laser[J]. Optics Letters, 2011, 36(13): 2483-2485.

    [16] [16] Nelson L E, Ippen E P, Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser[J]. Applied Physics Letters, 1995, 67(1): 19-21.

    [17] [17] Engelbrecht M, Haxsen F, Ruehl A, et al. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ[J]. Optics Letters, 2008, 33(7): 690-692.

    [18] [18] Haxsen F, Ruehl A, Engelbrecht M, et al. Stretched-pulse operation of a thulium-doped fiber laser[J]. Optics Express, 2009, 16(25): 20471-20476.

    [19] [19] Wienke A, Haxsen F, Wandt D, et al. Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management[J]. Optics Letters, 2012, 37(13): 2466-2468.

    [20] [20] Wang Q, Chen T, Zhang B, et al. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes[J]. Optics Letters, 2011, 36(19): 3750-3752.

    [21] [21] Kadel R, Washburn B R. All-fiber passively mode-locked thulium/holmium laser with two center wavelengths[J]. Applied Optics, 2012, 51(27): 6465-6470.

    [22] [22] Wang Q, Geng J, Luo T, et al. Mode-locked 2 μm laser with highly thulium-doped silicate fiber[J]. Optics Letters, 2009, 34(23): 3616-3618.

    [23] [23] Wang Q, Geng J, Jiang Z, et al. Mode-locked Tm-Ho-codoped fiber laser at 2.06 μm[J]. IEEE Photonics Technology Letters, 2011, 23(11): 682-684.

    [24] [24] Kivisto S, Okhotnikov O G. 600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber[J]. IEEE Photonics Technology Letters, 2011, 23(8): 477-479.

    [25] [25] Gumenyuk R, Vartiainen I, Tuovinen H, et al. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Optics Letters, 2011, 36(5): 609-611.

    [26] [26] Liu J, Wang P. High-energy near transform-limited pulses from an ultrafast thulium-doped all-fiber MOPA[J]. IEEE Photonics Technology Letters, 2012, 24(16): 1384-1386.

    [27] [27] Zhou W, Shen D Y, Wang Y S, et al. Mode-locked thulium-doped fiber laser with a narrow bandwidth and high pulse energy[J]. Laser Physics Letters, 2012, 9(8): 587-590.

    [28] [28] Solodyankin M A, Obraztsova E D, Lobach A S, et al. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber[J]. Optics Letters, 2008, 33(12): 1336-1338.

    [29] [29] Kieu K, Wise F W. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber[J]. IEEE Photonics Technology Letters, 2009, 21(3): 128-130.

    [30] [30] Kivist S, Hakulinen T, Kaskela A, et al. Carbon nanotube films for ultrafast broadband technology[J]. Optics Express, 2009, 17(4): 2358-2363.

    [31] [31] Wang Q, Chen T, Li M, et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes[J]. Applied Physics Letters, 2013,103(1): 011103.

    [32] [32] Zhang M, Kelleher E J R, Torrisi F, et al. Tm-doped fiber laser mode-locked by graphene-polymer composite[J]. Optics Express, 2012, 20(22): 25077-25084.

    [33] [33] Zen D I M, Saidin N, Damanhuri S S A, et al. Mode-locked thulium-bismuth codoped fiber laser using graphene saturable absorber in ring cavity[J]. Applied Optics, 2013, 52(6): 1226-1229.

    [34] [34] Sotor J, Sobon G, Pasternak I, et al. Simultaneous mode-locking at 1565 nm and 1944 nm in fiber laser based on common graphene saturable absorber[J]. Optics Express, 2013, 21(16): 18994-19002.

    [35] [35] Sobon G, Sotor J, Pasternak I, et al. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber[J]. Optics Express, 2013, 21(10): 12797-12802.

    [36] [36] Wang Q Q, Chen T, Zhang B, et al. All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers[J]. Applied Physics Letters, 2013, 102(13): 131117.

    [37] [37] Liu J, Wu S, Xu J, et al. Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber[C]. California: CLEO: Applications and Technology, Optical Society of America, 2012: JW2A.76.

    [38] [38] Jung M, Koo J, Debnath P, et al. A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field[J]. Applied Physics Express, 2012, 5(11): 112702.

    [39] [39] Jung M, Koo J, Park J, et al. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber[J]. Optics Express, 2013, 21(17): 20062-20072.

    [40] [40] Chernysheva M A, Krylov A A, Kryukov P G, et al. Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser[J]. IEEE Photonics Technology Letters, 2012, 24(14): 1254-1256.

    [41] [41] Rudy C, Digonnet M, Byer R, et al. Thulium-doped germanosilicate mode-locked fiber lasers in lasers, sources, and related photonic devices[C]. California: OSA Technical Digest (CD), Optical Society of America, 2012: FTh4A.4.

    [42] [42] Chernysheva M A, Krylov A A, Kryukov P G, et al. Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber[J]. Optics Express, 2012, 20(26): B124-B130.

    [43] [43] Chernysheva M A, Krylov A A, Mou C, et al. Higher-order soliton generation in hybrid mode-locked thulium-doped fiber ring laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 425-432.

    [44] [44] Haxsen F, Wandt D, Morgner U, et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Optics Letters, 2012, 37(6): 1014-1016.

    [45] [45] Jung M, Lee J, Koo J, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator[J]. Optics Express 2014, 22(7): 7865-7874.

    [46] [46] Liu Jiang, Xu Jia, Wang Qian, et al. High-pulse-energy passively mode-locked 2.0 μm thulium-doped ultrafast all-fiber laser[J]. Chinese J Lasers, 2012, 39(6): 0602009.

    [47] [47] Liu Jiang, Wang Pu. 2 μm thulium-doped ultrafast all-fiber laser with watts-level average output power[J]. Chinese J Lasers, 2012, 39(8): 0802004.

    [48] [48] Liu Jiang, Wang Pu. High-power passively mode-locked thulium-doped femtosecond fiber laser at 2.0 μm[J]. Chinese J Lasers, 2012, 39(9): 0902001.

    [49] [49] Haxsen F, Wandt D, Morgner U, et al. Pulse energy of 151 nJ from ultrafast thulium-doped chirped-pulse fiber amplifier[J]. Optics Letters, 2010, 35(17): 2991-2993.

    [50] [50] Liu J, Wang Q, Wang P. High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system[J]. Optics Express, 2012, 20(20): 22442-22447.

    [51] [51] Sims R A, Kadwani P, Shah A S L, et al. 1 μJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system[J]. Optics Letters, 2013, 38(2): 121-123.

    [52] [52] Liu J, Xu J, Liu K, et al. High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier[J]. Optics Letters, 2013, 38(20): 4150-4153.

    [53] [53] Liu Jiang, Wang Pu. High-power narrow-bandwidth continuous wave thulium-doped all-fiber laser[J]. Chinese J Lasers, 2013, 40(1): 0102001.

    [54] [54] Wan P, Yang L, Liu J. High power 2 μm femtosecond fiber laser[J]. Optics Express, 2013, 21(18): 21374-21379.

    [55] [55] Stutzki F, Gaida C, Gebhardt M, et al. 152 W average power Tm-doped fiber CPA system[J]. Optics Letters, 2014, 39(16): 4671-4674.

    [56] [56] Gebhardt M, Gaida C, Hdrich S, et al. Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber[J]. Optics Letters, 2015, 40(12): 2770-2773.

    [57] [57] Gaida C, Gebhardt M, Stutzki F, et al. Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength[J]. Optics Letters, 2015, 40(22): 5160-5163.

    [58] [58] Liu J, Liu C, Shi H, et al. High-power linearly-polarized picosecond thulium-doped all-fiber master-oscillator power-amplifier[J]. Optics Express, 2016, 24(13): 15005-15011.

    [59] [59] Gaida C, Gebhardt M, Stutzki F, et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 2016, 41(17): 4130-4133.

    [60] [60] Tan F, Shi H, Sun R, et al. 1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser[J]. Optics Express, 2016, 24(20): 22461-22468.

    CLP Journals

    [1] Su Yongsheng, Li Liang, Gao Hong, Wang Jianbin, Wang Gang. Laser Surface Texturing of Super-Hard Cutting Tools and Control of Texture Morphology[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121408

    [2] Guo Zhijian. Effects of Long-Range Coulomb Potential in Above-Threshold Ionization Energy Spectra of Atoms[J]. Laser & Optoelectronics Progress, 2018, 55(9): 90201

    Tools

    Get Citation

    Copy Citation Text

    Liu Jiang, Tan Fangzhou, Liu Chen, Wang Pu. Progress on High-Power Ultrashort-Pulsed Thulium-Doped Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 201003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: laser devices and laser physics

    Received: Sep. 18, 2016

    Accepted: --

    Published Online: Feb. 22, 2017

    The Author Email:

    DOI:10.3788/cjl201744.0201003

    Topics