Laser & Optoelectronics Progress, Volume. 61, Issue 12, 1228008(2024)

Real-Time Traffic Sign Detection Based on Yolov5-MGC

Ningke Zhu1, Qing Ge2, Hanwen Wang1, and Pengfei Yu1、*
Author Affiliations
  • 1School of Information Science & Engineering, Yunnan University, Kunming 650504, Yunnan, China
  • 2Kunming Public Security Traffic Management Information Application Center, Kunming 650000, Yunnan, China
  • show less
    Figures & Tables(12)
    Structure of lightweight backbone. (a) Structure of Mobile-Bottleneck; (b) depthwise separable convolution; (c) structure of MobileCSP
    Structure of GLFA
    Structure of CARAFE
    Structure of Yolov5-MGC
    Categories and quantities of CMTSD dataset
    Visualization of detection results on CMTSD
    Visualization of detection results of different models in different scenes
    • Table 1. Results of ablation experiments

      View table

      Table 1. Results of ablation experiments

      ModelMGCmAP@0.5 /%Speed /(frame·s-1Param /MBFLOPs /109
      Yolov5m91.7655.1821.1250.81
      Yolov5m-M92.2069.1612.0926.36
      Yolov5m-G93.1652.0821.3752.59
      Yolov5m-C92.9252.5121.6652.69
      Yolov5m-MG92.6267.2212.0826.28
      Yolov5m-MC92.1967.9112.1126.59
      Yolov5m-GC94.0248.7821.9054.45
      Yolov5m-MGC94.3462.5912.3628.38
    • Table 2. Comparison of attention models

      View table

      Table 2. Comparison of attention models

      ModelmAP@0.5 /%Speed /(frame·s-1Param /MBFLOPs /109
      Yolov5-SE91.6937.5847.06115.92
      Yolov5-CBAM91.7853.2621.4251.62
      Yolov5-ECA92.8451.0921.3851.62
      Yolov5-MS-CAM92.7252.6721.3151.30
      Yolov5-GLFA93.1652.0821.3752.59
    • Table 3. Performance comparison of different models on CMTSD

      View table

      Table 3. Performance comparison of different models on CMTSD

      ModelBackbonemAP@0.5 /%Speed /(frame·s-1Param /MBFLOPs /109
      Faster R-CNNResnet5063.6410.25137.02402.31
      SSDVGG1690.3754.5023.879274.05
      Yolov4CSPDarknet5389.1234.4664.02141.72
      Yolov5mCSPDarknet5391.7655.1821.1250.81
      Yolov5mMobilenetv392.1858.1911.7621.13
      Yolov5m-6.0CSPDarknet5391.6557.0420.9448.24
      Yolov792.2643.6937.28105.04
      Yolov5-MGCCSPDarknet5394.3462.5912.3628.38
    • Table 4. Performance comparison of different models on CCTSDB

      View table

      Table 4. Performance comparison of different models on CCTSDB

      ModelBackbonemAP@0.5 /%Speed /(frame·s-1Param /MBFLOPs /109
      Yolov4CSPDarknet5390.3036.8264.02141.72
      Yolov5mCSPDarknet5389.8244.1921.1250.81
      CenternetResnet5091.3438.6932.6670.21
      Yolov5m-6.0CSPDarknet5392.1946.6720.9448.24
      Model in Ref.[28CSPDarknet5384.35
      Model in Ref.[2992.4720.0
      Yolov5-MGCCSPDarknet5394.3151.3712.3628.38
    • Table 5. AP comparison for a target with defferent sizes

      View table

      Table 5. AP comparison for a target with defferent sizes

      ModelAP for a target with defferent sizes
      SmallMediumLarge
      Yolov50.2470.6160.764
      Yolov5-MGC0.4820.6960.783
    Tools

    Get Citation

    Copy Citation Text

    Ningke Zhu, Qing Ge, Hanwen Wang, Pengfei Yu. Real-Time Traffic Sign Detection Based on Yolov5-MGC[J]. Laser & Optoelectronics Progress, 2024, 61(12): 1228008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jul. 12, 2023

    Accepted: Sep. 18, 2023

    Published Online: Jun. 5, 2024

    The Author Email: Pengfei Yu (pfyu@ynu.edu.cn)

    DOI:10.3788/LOP231703

    CSTR:32186.14.LOP231703

    Topics