Laser & Optoelectronics Progress, Volume. 58, Issue 4, 0415010(2021)

Algorithm for Stereo Matching Based on Multi-Task Learning

Yufeng Wang1,2, Hongwei Wang2,3、*, Yu Liu2, Mingquan Yang2, and Jicheng Quan1,2、*
Author Affiliations
  • 1University of Naval Aviation, Yantai, Shandong 264001, China
  • 2Aviation University of Air Force, Changchun, Jilin 130022, China
  • 3Information Engineering University, Zhengzhou, Henan 450001, China
  • show less
    Figures & Tables(11)
    Overall architecture of proposed algorithm
    Architecture comparison of SPP and SPPSA. (a) SPP; (b) SPPSA
    Architecture of FEM
    Architecture of DRM
    Visual results of proposed algorithm. (a) Left image; (b) edge 1; (c) edge 2; (d) feature consistency map; (e) error map; (f) disparity map
    • Table 1. Performance evaluation of algorithm under each number of DRM iterations

      View table

      Table 1. Performance evaluation of algorithm under each number of DRM iterations

      Number of iterationsEep /pixelED1 /%R1 /%R3 /%R5 /%frun /(frame·s-1)
      11.024.1211.674.633.3815.84
      20.853.5610.064.132.8212.22
      30.833.529.854.022.808.64
      40.823.469.623.872.816.22
    • Table 2. Performance evaluation of algorithm under different FEM settings

      View table

      Table 2. Performance evaluation of algorithm under different FEM settings

      Number of iterationsEep /pixelED1 /%R1 /%R3 /%R5 /%frun /(frame·s-1)
      ResBlock0.873.7510.484.322.9313.37
      SPP0.863.6210.004.222.8812.64
      SPPSA0.853.5610.064.132.8212.22
    • Table 3. Performance evaluation of algorithm under different auxiliary task settings

      View table

      Table 3. Performance evaluation of algorithm under different auxiliary task settings

      Number of iterationsEep /pixelED1 /%R1 /%R3 /%R5 /%frun /(frame·s-1)
      None1.054.4812.364.943.5214.65
      Con1.004.1711.654.803.3213.58
      edge 1+Con0.883.8410.714.352.7612.46
      edge 2+Con0.893.8510.654.372.9813.23
      edge 1+edge 2+Con0.853.5610.064.132.8212.22
    • Table 4. Performance evaluation under different training losses

      View table

      Table 4. Performance evaluation under different training losses

      Training lossEep /pixelED1 /%R1 /%R3 /%R5 /%
      ap1.658.2727.968.656.02
      ap+edge1.487.5125.757.895.36
      ap+Con1.326.5621.726.864.75
      ap+edge+Con1.286.0419.956.234.09
      SL1+edge+Con0.712.5613.252.871.69
    • Table 5. Performance evaluation of each algorithm on KITTI2015 test dataset

      View table

      Table 5. Performance evaluation of each algorithm on KITTI2015 test dataset

      AlgorithmED1(All) /%ED1(Noc) /%Runtime /s
      bgfgAll areabgfgAll area
      M2S_CSPN[18]1.512.881.741.402.671.610.50
      EdgeStereo-V2[21]1.843.302.081.692.941.890.32
      WSMCnet[17]1.724.192.131.513.571.850.39
      SegStereo[19]1.884.072.251.763.702.080.60
      PSMNet[12]1.864.622.321.714.312.140.41
      iResNet-i2[9]2.253.402.444.113.724.050.12
      CRL[8]2.483.592.672.323.122.450.47
      GC-net[11]2.216.162.872.025.582.610.90
      MBFnet[22]2.594.802.962.224.142.540.05
      SGM-Net[6]2.668.643.662.237.443.0967.00
      MC-CNN-arct[2]2.898.883.892.487.643.3367.00
      DispNetC[7]4.324.414.344.113.724.050.06
      Proposed algorithm2.074.012.391.893.692.190.09
    • Table 6. Performance evaluation on each dataset

      View table

      Table 6. Performance evaluation on each dataset

      DatasetK-valMQ-valETH-val
      Eep /pixelED1 /%Eep /pixelED1 /%Eep /pixelED1 /%
      Pretrained1.487.050.724.990.654.77
      K-train0.712.561.067.200.511.66
      MQ-train1.729.380.472.580.592.69
      ETH-train1.8410.851.328.360.321.26
      KME-train0.783.010.492.610.361.33
    Tools

    Get Citation

    Copy Citation Text

    Yufeng Wang, Hongwei Wang, Yu Liu, Mingquan Yang, Jicheng Quan. Algorithm for Stereo Matching Based on Multi-Task Learning[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0415010

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Apr. 16, 2020

    Accepted: Apr. 25, 2020

    Published Online: Feb. 26, 2021

    The Author Email: Wang Hongwei (jicheng_quan@126.com), Quan Jicheng (jicheng_quan@126.com)

    DOI:10.3788/LOP202158.0415010

    Topics