Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817011(2025)
Review of Structure and Application of Line-Field Optical Coherence Tomography Systems (Invited)
[7] Wiesauer K, Pircher M, Götzinger E et al. En-face scanning optical coherence tomography with ultra-high resolution for material investigation[J]. Optics Express, 13, 1015-1024(2005).
[8] Stifter D, Burgholzer P, Höglinger O et al. Polarisation-sensitive optical coherence tomography for material characterisation and strain-field mapping[J]. Applied Physics A, 76, 947-951(2003).
[17] Spaide R F, Fujimoto J G, Waheed N K. Image artifacts in optical coherence tomography angiography[J]. Retina, 35, 2163-2180(2015).
[19] Carpenter R H S[M]. Movements of the eyes(1980).
[22] Potsaid B, Gorczynska I, Srinivasan V J et al. Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second[J]. Optics Express, 16, 15149-15169(2008).
[23] Yasuno Y, Madjarova V D, Makita S et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments[J]. Optics Express, 13, 10652-10664(2005).
[24] Klein T, Wieser W, Reznicek L et al. Multi-MHz retinal OCT[J]. Biomedical Optics Express, 4, 1890-1908(2013).
[26] Huang D M, Li F, He Z J et al. 400 MHz ultrafast optical coherence tomography[J]. Optics Letters, 45, 6675-6678(2020).
[27] An L, Li P, Shen T T et al. High speed spectral domain optical coherence tomography for retinal imaging at 500, 000 A-lines per second[J]. Biomedical Optics Express, 2, 2770-2783(2011).
[29] Seong D, Jeon D, Wijesinghe R E et al. Ultrahigh-speed spectral-domain optical coherence tomography up to 1-MHz A-scan rate using space-time-division multiplexing[J]. IEEE Transactions on Instrumentation and Measurement, 70, 4504108(2021).
[30] Wang R, Yun J X, Yuan X C et al. Megahertz streak-mode Fourier domain optical coherence tomography[J]. Journal of Biomedical Optics, 16, 066016(2011).
[31] Akca B I, Nguyen V D, Kalkman J et al. Toward spectral-domain optical coherence tomography on a chip[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1223-1233(2011).
[33] Agneter A, Muellner P, Nguyen Q et al. CMOS optoelectronic spectrometer based on photonic integrated circuit for in vivo 3D optical coherence tomography[J]. PhotoniX, 5, 31(2024).
[34] Choi D, Hiro-Oka H, Furukawa H et al. Fourier domain optical coherence tomography using optical demultiplexers imaging at 60, 000, 000 lines/s[J]. Optics Letters, 33, 1318-1320(2008).
[36] Fujimoto J, Drexler W. Introduction to optical coherence tomography[M]. Optical coherence tomography: technology and applications, 1-45(2008).
[40] Jung W, Kim J, Jeon M et al. Handheld optical coherence tomography scanner for primary care diagnostics[J]. IEEE Transactions on Bio-Medical Engineering, 58, 741-744(2011).
[42] Akca B I, Kalkman J, Ismail N et al. Toward spectral-domain optical coherence tomography on a chip[J]. IEEE journal of selected topics in quantum electronics, 18, 1223-1233(2011).
[43] Akca B I, Chang L, Yurtsever G. Integration on a microchip: a glimpse into the future of optical coherence tomography[M]. Progress in optics, 66, 1-34(2021).
[44] Karamata B, Lambelet P, Laubscher M et al. Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography[J]. Optics Letters, 29, 736-738(2004).
[46] Grajciar B, Pircher M, Fercher A F et al. Parallel Fourier domain optical coherence tomography: measurement of the human eye in vivo[J]. Proceedings of SPIE, 5690, 163-167(2005).
[47] Zhang Y, Rha J, Jonnal R S et al. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina[J]. Optics Express, 13, 4792-4811(2005).
[48] Bu P, Wang X Z, Sasaki O. Full-range parallel Fourier-domain optical coherence tomography using sinusoidal phase-modulating interferometry[J]. Journal of Optics A: Pure and Applied Optics, 9, 422-426(2007).
[49] Chen Y, Huang S W, Aguirre A D et al. High-resolution line-scanning optical coherence microscopy[J]. Optics Letters, 32, 1971-1973(2007).
[50] Liu T G, Li J S, Jiang J F et al. Research of line-focus optical coherence tomography[J]. Opto-Electronic Engineering, 32, 39-46(2005).
[51] Hu M L, Sun C W, Gao A H et al. Research on non-mechanical scan spectral-domain OCT technique[J]. Laser & Optoelectronics Progress, 47, 031101(2010).
[52] Yang J W, Huang J J, He Y et al. Image quality optimization of line-focused spectral domain optical coherence tomography with subsection dispersion compensation[J]. Opto-Electronic Engineering, 51, 240042(2024).
[53] Zuluaga A F, Richards-Kortum R. Spatially resolved spectral interferometry for determination of subsurface structure[J]. Optics Letters, 24, 519-521(1999).
[54] Dhalla A H, Migacz J V, Izatt J A. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources[J]. Optics Letters, 35, 2305-2307(2010).
[55] Chen Z Y. Development and application of parallel spectral domain optical coherence tomography[D](2017).
[56] Endo T, Yasuno Y, Truffer F et al. Line-field Fourier-domain optical coherence tomography[J]. Proceedings of SPIE, 5690, 168-173(2005).
[57] Nakamura Y, Makita S, Yamanari M et al. High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography[J]. Optics Express, 15, 7103-7116(2007).
[58] Lawman S, Mason S, Kaye S B et al. Accurate in vivo Bowman’s thickness measurement using Mirau ultrahigh axial resolution line field optical coherence tomography[J]. Translational Vision Science & Technology, 11, 6(2022).
[62] Lee S W, Kim B M. Line-field optical coherence tomography using frequency-sweeping source[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 50-55(2008).
[65] Al-Qazwini Z, Ko Z Y G, Mehta K et al. Ultrahigh-speed line-scan SD-OCT for four-dimensional in vivo imaging of small animal models[J]. Biomedical Optics Express, 9, 1216-1228(2018).
[66] Malone J D, Hussain I, Bowden A K. SmartOCT: smartphone-integrated optical coherence tomography[J]. Biomedical Optics Express, 14, 3138-3151(2023).
[67] Witte S, Baclayon M, Peterman E G et al. Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control[J]. Optics Express, 17, 11335-11349(2009).
[68] Chen Y, Huang S W, Zhou C et al. Improved detection sensitivity of line-scanning optical coherence microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1094-1099(2012).
[69] Han L, Hosseiaee Z, Tan B Y et al. High resolution line-field SD-OCT with 2.5 kHz frame rate for cellular resolution imaging of biological tissue[J]. Proceedings of SPIE, 10867, 108672X(2019).
[70] Graf R N, Brown W J, Wax A. Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source[J]. Optics Letters, 33, 1285-1287(2008).
[71] Zhong J F, Zhong S C, Zhang Q K et al. Two-dimensional optical coherence tomography for real-time structural dynamical characterization[J]. Optics and Lasers in Engineering, 66, 74-79(2015).
[72] Wang Y H, Liu X. Line field Fourier domain optical coherence tomography based on a spatial light modulator[J]. Applied Optics, 60, 985-992(2021).
[74] Mehta D S, Bhatt S, Kaur H et al. Longitudinal spatial coherence gated line-field optical coherence tomography of multilayer structures with speckle-free and reduced crosstalk[J]. Proceedings of SPIE, 12391, 123910P(2023).
[75] Chen K Y, Song W X, Han L et al. Powell lens-based line-field spectral domain optical coherence tomography system for cellular resolution imaging of biological tissue[J]. Biomedical Optics Express, 14, 2003-2014(2023).
[76] Song W. Powell lens-based line-scan spectral domain optical coherence tomography for cellular resolution imaging of biological tissues[D](2022).
[77] Kamal M, Narayanswamy S, Packirisamy M. Optimized off-axis cylindrical mirror-focused line-scanning system for optical coherence tomography imaging applications[J]. Journal of Biomedical Optics, 17, 056006(2012).
[78] Neuhaus K, Ni S, Khan S et al. Real-time line-field OCT using low-cost high-speed camera[J]. Proceedings of SPIE, 12367, 123670F(2023).
[79] Xiao Q, Fu L. High resolution, real-time line-field Fourier-domain interferometry[J]. Journal of Innovative Optical Health Sciences, 5, 1250009(2012).
[80] Dubois A, Xue W K, Levecq O et al. Mirau-based line-field confocal optical coherence tomography[J]. Optics Express, 28, 7918-7927(2020).
[82] Ginner L, Schmoll T, Kumar A et al. Holographic line field en-face OCT with digital adaptive optics in the retina in vivo[J]. Biomedical Optics Express, 9, 472-485(2018).
[83] Fercher A F, Hitzenberger C K, Sticker M et al. Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography[J]. Optics Express, 9, 610-615(2001).
[84] Ginner L, Kumar A, Fechtig D et al. Noniterative digital aberration correction for cellular resolution retinal optical coherence tomography in vivo[J]. Optica, 4, 924-931(2017).
[88] Pandiyan V P, Jiang X Y, Kuchenbecker J A et al. Reflective mirror-based line-scan adaptive optics OCT for imaging retinal structure and function[J]. Biomedical Optics Express, 12, 5865-5880(2021).
[89] Piñero D P, Alió J L, Alesón A et al. Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes[J]. Clinical & Experimental Optometry, 92, 297-303(2009).
[90] Li X R, Lawman S, Dong B Q et al. Integrated line-field optical coherence tomography and scheimpflug imaging for corneal imaging[J]. Optics and Lasers in Engineering, 182, 108473(2024).
[91] Li X R, Lawman S, Williams B M et al. Simultaneous optical coherence tomography and Scheimpflug imaging using the same incident light[J]. Optics Express, 28, 39660-39676(2020).
[92] Zhang Z J, Yang X Y, Zhao Z Y et al. Rapid imaging and product screening with low-cost line-field Fourier domain optical coherence tomography[J]. Scientific Reports, 13, 10809(2023).
[93] Yang X Y, Zhang Z J, Li X H et al. High-speed low-cost line-field spectral-domain optical coherence tomography for industrial applications[J]. Optics and Lasers in Engineering, 184, 108631(2025).
[94] Lawman S, Williams B M, Zheng Y L et al. Quasi-tomography by free space line field spectral domain optical coherence reflectometry[J]. Measurement Science and Technology, 31, 065203(2020).
[95] Fauchart M, Marques M J M, Bradu A et al. Evaluation of a commercial-grade camera for line field spectral-domain optical coherence tomography[J]. Proceedings of SPIE, 10867, 1086731(2019).
[96] Dubois A, Levecq O, Azimani H et al. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors[J]. Journal of Biomedical Optics, 23, 106007(2018).
[97] Davis A, Levecq O, Azimani H et al. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging[J]. Biomedical Optics Express, 10, 694-706(2019).
[98] Ogien J, Levecq O, Azimani H et al. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo[J]. Biomedical Optics Express, 11, 1327-1335(2020).
[99] Latriglia F, Ogien J, Dubois A. Line-field confocal optical coherence tomography based on tandem interferometry with a focus-tunable lens[J]. Biomedical Optics Express, 15, 5384-5399(2024).
[100] Zeylikovich I, Gilerson A, Alfano R R. Nonmechanical grating-generated scanning coherence microscopy[J]. Optics Letters, 23, 1797-1799(1998).
[101] Watanabe Y, Yamada K, Sato M. Ultrahigh-speed axial-lateral parallel time domain optical coherence tomography[J]. Proceedings of SPIE, 6429, 642922(2007).
[102] Watanabe Y, Yamada K, Sato M. In vivo non-mechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera[J]. Optics Communications, 261, 376-380(2006).
[103] Watanabe Y, Yamada K, Sato M. Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography[J]. Optics Express, 14, 5201-5209(2006).
[104] Watanabe Y, Takasugi Y, Yamada K et al. Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range[J]. Optics Express, 15, 5208-5217(2007).
[105] Watanabe Y, Sato M. Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation[J]. Optics Express, 16, 524-534(2008).
[106] Tang D W, Henning A J, Gao F et al. Improved description of the signal formation in grating generated-optical coherence tomography[J]. Optics Express, 27, 33999-34010(2019).
[107] Lee K S, Hur H, Bae J Y et al. High speed parallel spectral-domain OCT using spectrally encoded line-field illumination[J]. Applied Physics Letters, 112, 041102(2018).
[109] Zhuo Y, Bhuckory M, Li H et al. Retinal thermal deformations measured with phase-sensitive optical coherence tomography in vivo[J]. Light: Science & Applications, 14, 151(2025).
[110] Adler D C, Huber R, Fujimoto J G. Phase-sensitive optical coherence tomography at up to 370, 000 lines per second using buffered Fourier domain mode-locked lasers[J]. Optics Letters, 32, 626-628(2007).
[112] Reolon D, Jacquot M, Verrier I et al. Broadband supercontinuum interferometer for high-resolution profilometry[J]. Optics Express, 14, 128-137(2006).
[113] Yaqoob Z, Choi W, Oh S et al. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing[J]. Optics Express, 17, 10681-10687(2009).
[114] Grajciar B, Lehareinger Y, Fercher A F et al. High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512000 A-scan/s[J]. Optics Express, 18, 21841-21850(2010).
[115] Zhang Y, Dong B, Bai Y L et al. Measurement of depth-resolved thermal deformation distribution using phase-contrast spectral optical coherence tomography[J]. Optics Express, 23, 28067-28075(2015).
[116] Lawman S, Madden P W, Romano V et al. Deformation velocity imaging using optical coherence tomography and its applications to the cornea[J]. Biomedical Optics Express, 8, 5579-5593(2017).
[118] Zhao Z Y, Zhang Z J, Lawman S J et al. Characterization of electrical-thermal-mechanical deformation of bonding wires under silicone gel using LF-OCT[J]. IEEE Transactions on Power Electronics, 36, 11045-11054(2021).
[119] George D M M, Nandakumar H, Koushik V et al. In-vivo sensing of the vibrations and thickness of the human tympanum with real-time profilometry using low-cost line-field spectral domain optical coherence tomography[J]. Sādhanā, 49, 122(2024).
[120] Rogowska J, Patel N A, Fujimoto J G et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J]. Heart, 90, 556-562(2004).
[121] Liu C H, Schill A, Wu C et al. Non-contact single shot elastography using line field low coherence holography[J]. Biomedical Optics Express, 7, 3021-3031(2016).
[122] Liu C H, Schill A, Raghunathan R et al. Ultra-fast line-field low coherence holographic elastography using spatial phase shifting[J]. Biomedical Optics Express, 8, 993-1004(2017).
[123] Singh M, Schill A W, Nair A et al. Ultra-fast dynamic line-field optical coherence elastography[J]. Optics Letters, 46, 4742-4744(2021).
[126] Shen K X, Zhou X Y, Wang Q Y et al. Ultrafast line-field holographic elastography with single excitation for corneal biomechanical characterization[J]. Biomedical Optics Express, 16, 1887-1898(2025).
[127] Robles F E, Wilson C, Grant G et al. Molecular imaging true-colour spectroscopic optical coherence tomography[J]. Nature Photonics, 5, 744-747(2011).
[129] Chen K Y, Swanson S, Bizheva K. Line-field dynamic optical coherence tomography platform for volumetric assessment of biological tissues[J]. Biomedical Optics Express, 15, 4162-4175(2024).
[130] Nakamura Y, Sugisaka J I, Sando Y et al. Complex numerical processing for in-focus line-field spectral-domain optical coherence tomography[J]. Japanese Journal of Applied Physics, 46, 1774(2007).
[131] Lawman S, Dong Y, Williams B M et al. High resolution corneal and single pulse imaging with line field spectral domain optical coherence tomography[J]. Optics Express, 24, 12395-12405(2016).
[132] Neuhaus K, Khan S, Thaware O et al. Real-time line-field optical coherence tomography for cellular resolution imaging of biological tissue[J]. Biomedical Optics Express, 15, 1059-1073(2024).
[133] Yasuno Y, Endo T, Makita S et al. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation[J]. Journal of Biomedical Optics, 11, 014014(2006).
[134] Wang J Y, Dainty C, Podoleani A. Line-field spectral domain optical coherence tomography using a 2D camera[C], 7372-21(2009).
[135] Mujat M, Iftimia N V, Ferguson R D et al. Swept-source parallel OCT[J]. Proceedings of SPIE, 7168, 71681E(2009).
[136] Ogien J, Tavernier C, Fischman S et al. Line-field confocal optical coherence tomography (LC-OCT): principles and practical use[J]. Italian Journal of Dermatology and Venereology, 158, 171-179(2023).
[137] Lenoir C, Perez-Anker J, Diet G et al. Line-field confocal optical coherence tomography of benign dermal melanocytic proliferations: a case series[J]. Journal of the European Academy of Dermatology and Venereology, 35, e399-e401(2021).
[138] Tognetti L, Cinotti E, Suppa M et al. Line field confocal optical coherence tomography: an adjunctive tool in the diagnosis of autoimmune bullous diseases[J]. Journal of Biophotonics, 14, e202000449(2021).
[139] Hobelsberger S, Steininger J, Bauer A et al. Line-field confocal optical coherence tomography for the diagnosis of onychomycosis in comparison with healthy nails: a case series[J]. Journal of the European Academy of Dermatology and Venereology, 37, e1234-e1236(2023).
[140] Chauvel-Picard J, Bérot V, Tognetti L et al. Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: a pilot study[J]. Journal of Biophotonics, 15, e202100236(2022).
[141] Cappilli S, Paradisi A, Di Stefani A et al. Line-field confocal optical coherence tomography: a new skin imaging technique reproducing a “virtual biopsy” with evolving clinical applications in dermatology[J]. Diagnostics, 14, 1821(2024).
[142] Zhao C, Chen Z Y, Ding Z H et al. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection[J]. Acta Physica Sinica, 63, 194201(2014).
[143] Chen Z Y, Shen Y, Bao W et al. Motion correction using overlapped data correlation based on a spatial-spectral encoded parallel optical coherence tomography[J]. Optics Express, 25, 7069-7083(2017).
[144] Shen Y, Chen Z Y, Qiu J R et al. Research progress on parallel spectral domain optical coherence tomography technology[J]. Chinese Journal of Lasers, 45, 0207004(2018).
[145] Lawman S, Williams B M, Zhang J K et al. Scan-less line field optical coherence tomography, with automatic image segmentation, as a measurement tool for automotive coatings[J]. Applied Sciences, 7, 351(2017).
[146] Shirazi M F, Wijesinghe R E, Ravichandran N K et al. Quality assessment of the optical thin films using line field spectral domain optical coherence tomography[J]. Optics and Lasers in Engineering, 110, 47-53(2018).
[147] You R F, Huang P B, Ni Z H et al. Monitoring the micro-damage repair process inside composite using line-field spectral-domain optical coherence tomography[J]. Composites Science and Engineering, 31-36(2022).
[148] Sun N, Xing F J, Nie J R et al. Micron-resolution high-performance line field optical coherence tomography and its application[J]. Optical Engineering, 61, 033102(2022).
[149] Barrick J, Doblas A, Gardner M R et al. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source[J]. Optics Letters, 41, 5620-5623(2016).
[150] Han L, Bizheva K. Correcting spatial-spectral crosstalk and chromatic aberrations in broadband line-scan spectral-domain OCT images[J]. Biomedical Optics Express, 14, 3344-3361(2023).
[151] Abbasi N, Chen K Y, Wong A et al. Computational approach for correcting defocus and suppressing speckle noise in line-field optical coherence tomography images[J]. Biomedical Optics Express, 15, 5491-5504(2024).
[152] Bu P, Wang X, Sasaki O. One-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency[J]. Optical Engineering, 47, 050502(2008).
[153] Huang B J, Bu P, Wang X Z et al. Full-range parallel Fourier-domain optical coherence tomography using a spatial carrier frequency[J]. Applied Optics, 52, 958-965(2013).
Get Citation
Copy Citation Text
Jianwen Yang, Jiangjie Huang, Jinyuan Hu, Xiadi Ye, Jinyu Fan, Yi He. Review of Structure and Application of Line-Field Optical Coherence Tomography Systems (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817011
Category: Medical Optics and Biotechnology
Received: Jul. 14, 2025
Accepted: Aug. 4, 2025
Published Online: Sep. 16, 2025
The Author Email: Yi He (heyi@sibet.ac.cn)
CSTR:32186.14.LOP251238