Chinese Journal of Ship Research, Volume. 17, Issue 6, 48(2022)

Efficient privacy-preserving federated learning method for Internet of Ships

Zehui ZHANG1, Cong GUAN2,3, Hang GAO4, Tiegang GAO1, and Hui CHEN2,3
Author Affiliations
  • 1College of Software, Nankai University, Tianjin 300350, China
  • 2School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
  • 3Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan 430063, China
  • 4Institute of Public Safety Research, Tsinghua University, Beijing 100084, China
  • show less
    Figures & Tables(15)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. CASE WESTERN rolling bearing fault dataset

      View table
      View in Article

      Table 1. CASE WESTERN rolling bearing fault dataset

      标签孔径故障尺寸/mm状态故障程度样本矩阵维度数量/个
      N0正常28×28500
      IR118内圈故障微小28×28500
      IR236内圈故障中度28×28500
      IR353内圈故障显著28×28500
      OR118外圈故障微小28×28500
      OR236外圈故障中度28×28500
      OR353外圈故障显著28×28500
      B118滚球故障微小28×28500
      B236滚球故障中度28×28500
      B353滚球故障显著28×28500
    • Table 2. Execution time of the encryption/decryption operations

      View table
      View in Article

      Table 2. Execution time of the encryption/decryption operations

      操作方法执行时间/s
      2 000个参数10 000个参数65 162个参数
      Paillier加密14.6171.58594.67
      Paillier解密4.2220.62134.94
      Paillier密文加法0.030.151.04
    • Table 3. Classification results of different FLs

      View table
      View in Article

      Table 3. Classification results of different FLs

      算法准确率/%精准率/%召回率/%上传参数量(|w|∙N)压缩比
      FL93.6094.1393.602 0001
      MFL99.1099.1399.102 0001
      EPFL98.8098.8598.80199.800.1
    • Table 4. Classification results of the EPFL with different momentum rates

      View table
      View in Article

      Table 4. Classification results of the EPFL with different momentum rates

      算法γ准确率/%精准率/%召回率/%
      EPFL096.9097.0896.90
      EPFL0.398.4098.5098.40
      EPFL0.598.7098.7998.70
      EPFL0.798.8098.8598.80
    • Table 5. Classification results of the EFL with different node numbers

      View table
      View in Article

      Table 5. Classification results of the EFL with different node numbers

      算法准确率/%精准率/%召回率/%
      EFL(N=5)99.1099.1099.10
      EFL(N=10)98.8098.8598.80
      EFL(N=15)98.2098.2598.20
      EFL(N=20)97.1097.2497.10
    Tools

    Get Citation

    Copy Citation Text

    Zehui ZHANG, Cong GUAN, Hang GAO, Tiegang GAO, Hui CHEN. Efficient privacy-preserving federated learning method for Internet of Ships[J]. Chinese Journal of Ship Research, 2022, 17(6): 48

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 13, 2021

    Accepted: --

    Published Online: Mar. 26, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02594

    Topics