International Journal of Extreme Manufacturing, Volume. 7, Issue 1, 12008(2025)

Advanced multi-nozzle electrohydrodynamic printing: mechanism, processing, and diverse applications at micro/nano-scale

Li Yin, Zhang Guangming, Zhang Jinrun, Song Daosen, Guo Chenxu, Zhou Wei, Fu Zhiguo, Zhu Xiaoyang, Wang Fei, Duan Yongqing, Dong Jingyan, and Lan Hongbo
References(185)

[1] [1] Chu W-S, Kim C-S, Lee H-T, Choi J-O, Park J-I, Song J-H, Jang K-H and Ahn S-H 2014 Hybrid manufacturing in micro/nano scale: a review Int. J. Precis. Eng. Manuf. -Green Technol.1 75–92

[2] [2] Huang Z Y, Shao G B and Li L Q 2023 Micro/nano functional devices fabricated by additive manufacturing Prog. Mater. Sci.131 101020

[3] [3] Chivate A and Zhou C 2024 Additive manufacturing of micropatterned functional surfaces: a review Int. J. Extrem. Manuf.6 042004

[4] [4] Zhang Y R, Chen L, Xie M Z, Zhan Z H, Yang D S, Cheng P, Duan H G, Ge Q and Wang Z L 2022 Ultra-fast programmable human-machine interface enabled by 3D printed degradable conductive hydrogel Mater. Today Phys.27 100794

[5] [5] Wang Z L, Xiong J S, Liao Y B, Xie M Z, Yang D S, Zhang C, Chen Y P and Zou Z G 2023 Bionic Janus membranes to manipulate bubbles underwater for hydrogen evolution reactions Chem. Eng. J.474 145352

[6] [6] Sun Y D, Cui J, Feng S W, Cui J J, Guo Y L, Liang C, Gao W Z, Lu Z, Liu F K and Zhang B 2024 Projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing Adv. Mater.36 2400103

[7] [7] Zhang W Q, Ye H T, Feng X B, Zhou W Z, Cao K, Li M Y, Fan S F and Lu Y 2022 Tailoring mechanical properties of PμSL 3D-printed structures via size effect Int. J. Extrem. Manuf.4 045201

[8] [8] Ge Q, Li Z Q, Wang Z L, Kowsari K, Zhang W, He X N, Zhou J L and Fang N X 2020 Projection micro stereolithography based 3D printing and its applications Int. J. Extrem. Manuf.2 022004

[9] [9] Duan Q et al 2023 22 nm resolution achieved by femtosecond laser two-photon polymerization of a hyaluronic acid vinyl ester hydrogel ACS Appl. Mater. Interfaces15 26472–83

[10] [10] O'Halloran S, Pandit A, Heise A and Kellett A 2023 Two-photon polymerization: fundamentals, materials, and chemical modification strategies Adv. Sci.10 2204072

[11] [11] Abele T, Messer T, Jahnke K, Hippler M, Bastmeyer M, Wegener M and Gpfrich K 2022 Two-photon 3D laser printing inside synthetic cells Adv. Mater.34 2106709

[12] [12] Pearre B W, Michas C, Tsang J-M, Gardner T J and Otchy T M 2019 Fast micron-scale 3D printing with a resonant-scanning two-photon microscope Addit. Manuf.30 100887

[13] [13] Carlotti M and Mattoli V 2019 Functional materials for two-photon polymerization in microfabrication Small15 1902687

[14] [14] Gamba L, Lajoie J A, Sippel T R and Secor E B 2023 Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas Adv. Funct. Mater.33 2304060

[15] [15] Gamba L, Johnson Z T, Atterberg J, Diaz-Arauzo S, Downing J R, Claussen J C, Hersam M C and Secor E B 2023 Systematic design of a graphene ink formulation for aerosol jet printing ACS Appl. Mater. Interfaces15 3325–35

[16] [16] Jung W et al 2021 Three-dimensional nanoprinting via charged aerosol jets Nature592 54–59

[17] [17] Saleh M S, Hu C S and Panat R 2017 Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing Sci. Adv.3 e1601986

[18] [18] Streek A, Regenfuss P, Ebert R and Exner H 2008 Laser micro sintering—a quality leap through improvement of powder packing Proc. 19th Annual Int. Solid Freeform Fabrication Symp. (Austin)

[19] [19] Zhang J L, Song B, Wei Q S, Bourell D and Shi Y S 2019 A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends J. Mater. Sci. Technol.35 270–84

[20] [20] Nagarajan B, Hu Z H, Song X, Zhai W and Wei J 2019 Development of micro selective laser melting: the state of the art and future perspectives Engineering5 702–20

[21] [21] Galliker P, Schneider J, Eghlidi H, Kress S, Sandoghdar V and Poulikakos D 2012 Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets Nat. Commun.3 890

[22] [22] Han Y W, Wei C and Dong J Y 2015 Droplet formation and settlement of phase-change ink in high resolution electrohydrodynamic (EHD) 3D printing J. Manuf. Process.20 485–91

[23] [23] Porter B F, Mkhize N and Bhaskaran H 2017 Nanoparticle assembly enabled by EHD-printed monolayers Microsyst. Nanoeng.3 17054

[24] [24] Zhang B, Lee J, Kim M, Lee N, Lee H and Byun D 2020 Direct patterning and spontaneous self-assembly of graphene oxide via electrohydrodynamic jet printing for energy storage and sensing Micromachines11 13

[25] [25] Cai S X, Sun Y L, Wang Z, Yang W G, Li X Y and Yu H B 2021 Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing Nanotechnol. Rev.10 1046–78

[26] [26] Sun C, Fang N, Wu D M and Zhang X 2005 Projection micro-stereolithography using digital micro-mirror dynamic mask Sens. Actuators A 121 113–20

[27] [27] Zheng Q Y, Xie B, Xu Z L and Wu H 2023 A systematic printability study of direct ink writing towards high-resolution rapid manufacturing Int. J. Extrem. Manuf.5 035002

[28] [28] Bai L et al 2024 Coaxial electrohydrodynamic printing of core–shell microfibrous scaffolds with layer-specific growth factors release for enthesis regeneration Int. J. Extrem. Manuf.6 055003

[29] [29] Zhang G M et al 2023 Electric-field-driven printed 3D highly ordered microstructure with cell feature size promotes the maturation of engineered cardiac tissues Adv. Sci.10 2206264

[30] [30] Wu Y 2021 Electrohydrodynamic jet 3D printing in biomedical applications Acta Biomater.128 21–41

[31] [31] Choe Y E and Kim G H 2020 A PCL/cellulose coil-shaped scaffold via a modified electrohydrodynamic jetting process Virtual Phys. Prototyp.15 403–16

[32] [32] Vijayavenkataraman S, Thaharah S, Zhang S, Lu W F and Fuh J Y H 2019 Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair Mater. Des.162 171–84

[33] [33] Meng Z J, Mu X D, He J K, Zhang J, Ling R and Li D C 2023 Embedding aligned nanofibrous architectures within 3D-printed polycaprolactone scaffolds for directed cellular infiltration and tissue regeneration Int. J. Extrem. Manuf.5 025001

[34] [34] Song J, Lv B H, Chen W C, Ding P and He Y 2023 Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair Int. J. Extrem. Manuf.5 032008

[35] [35] Zhu H, Yao C, Wei B Y, Xu C Y, Huang X X, Liu Y, He J K, Zhang J N and Li D C 2023 3D printing of functional bioengineered constructs for neural regeneration: a review Int. J. Extrem. Manuf.5 042004

[36] [36] Chen Y H et al 2024 Electrohydrodynamic inkjet printing of three-dimensional perovskite nanocrystal arrays for full-color micro-LED displays ACS Appl. Mater. Interfaces16 24908–19

[37] [37] Yang X et al 2024 Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display Nano Lett.24 3661–9

[38] [38] Yin Z P, Wang D Z, Guo Y L, Zhao Z Y, Li L Q, Chen W and Duan Y Q 2024 Electrohydrodynamic printing for high resolution patterning of flexible electronics toward industrial applications InfoMat6 e12505

[39] [39] Zheng X R, Hu M S, Liu Y X, Zhang J, Li X X, Li X M and Yang H 2022 High-resolution flexible electronic devices by electrohydrodynamic jet printing: from materials toward applications Sci. China Mater.65 2089–109

[40] [40] Ma S H, Dahiya A S and Dahiya R 2023 Out-of-plane electronics on flexible substrates using inorganic nanowires grown on high-aspect-ratio printed gold micropillars Adv. Mater.35 2210711

[41] [41] Zhou H H and Song Y L 2022 Fabrication of electronics by electrohydrodynamic jet printing Adv. Electron. Mater.8 2200728

[42] [42] Lee K-H, Lee S-S, Ahn D B, Lee J, Byun D and Lee S-Y 2020 Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing Sci. Adv.6 eaaz1692

[43] [43] Zhang H C et al 2023 Recent advances in nanofiber-based flexible transparent electrodes Int. J. Extrem. Manuf.5 032005

[44] [44] Li J M, Li Y X, Li S H and Guan Y F 2024 In situ preparation of SnO2/Pd@TiO2 bilayer sensor for highly sensitive and fast detection of H2S based on electrohydrodynamic jet printing Sens. Actuators B 409 135591

[45] [45] Cheng E et al 2023 A triboelectric nanogenerator coupled with internal and external friction for gesture recognition based on EHD printing technology Nano Energy110 108357

[46] [46] Chen J, Wu T, Zhang L B, Tang C L, Song H J, Huang F L and Zuo C C 2022 Flexible ionic-gel strain sensor with double network, high conductivity and high frost-resistance using electrohydrodynamic printing method Addit. Manuf.58 103021

[47] [47] Wang Q L, Zhang G N, Zhang H Y, Duan Y Q, Yin Z P and Huang Y A 2021 High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink Adv. Funct. Mater.31 2100857

[48] [48] Almekinders J C and Jones C 1999 Multiple jet electrohydrodynamic spraying and applications J. Aerosol. Sci.30 969–71

[49] [49] Gao Z Q, Yin J, Liu P, Li Q, Zhang R N, Yang H Y and Zhou H Z 2023 Simultaneous multi-material embedded printing for 3D heterogeneous structures Int. J. Extrem. Manuf.5 035001

[50] [50] Chen Y W et al 2024 3D printed grafts with gradient structures for organized vascular regeneration Int. J. Extrem. Manuf.6 035503

[51] [51] Duan Y Q, Xie W S, Yin Z P and Huang Y A 2024 Multi-material 3D nanoprinting for structures to functional micro/nanosystems Int. J. Extrem. Manuf.6 063001

[52] [52] Dong X F, Zhang J Y, Pang L, Chen J T, Qi M, You S J and Ren N Q 2019 An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold RSC Adv.9 9838–44

[53] [53] Lim J, Jun I, Lee Y B, Kim E M, Shin D, Jeon H, Park H and Shin H 2016 Fabrication of cell sheets with anisotropically aligned myotubes using thermally expandable micropatterned hydrogels Macromol. Res.24 562–72

[54] [54] Feng Z-Q, Yan K, Li J C, Xu X R, Yuan T, Wang T and Zheng J 2019 Magnetic Janus particles as a multifunctional drug delivery system for paclitaxel in efficient cancer treatment Mater. Sci. Eng. C 104 110001

[55] [55] Quevedo D F et al 2020 Multifunctional synthetic protein nanoparticles via reactive electrojetting Macromol. Rapid Commun.41 2000425

[56] [56] Gil M, Moon S, Yoon J, Rhamani S, Shin J-W, Lee K J and Lahann J 2018 Compartmentalized microhelices prepared via electrohydrodynamic cojetting Adv. Sci.5 1800024

[57] [57] Xu J, Wong D H C, Byrne J D, Chen K, Bowerman C and DeSimone J M 2013 Future of the particle replication in nonwetting templates (PRINT) technology Angew. Chem., Int. Ed.52 6580–9

[58] [58] Zhang H, Nunes J K, Gratton S E A, Herlihy K P, Pohlhaus P D and DeSimone J M 2009 Fabrication of multiphasic and regio-specifically functionalized PRINT® particles of controlled size and shape New J. Phys.11 075018

[59] [59] Xia M, Go E M, Choi K H, Lim J H, Park B, Yu T, Im S H, Kwak S K and Park B J 2018 One-step production of highly anisotropic particles via a microfluidic method J. Ind. Eng. Chem.64 328–36

[60] [60] Cheng J X, Yu S Y, Wang R and Ge Q 2024 Digital light processing based multimaterial 3D printing: challenges, solutions and perspectives Int. J. Extrem. Manuf.6 042006

[61] [61] Wang H Y et al 2024 Polar-coordinate line-projection light-curing continuous 3D printing for tubular structures Int. J. Extrem. Manuf.6 045004

[62] [62] Shah R K, Kim J-W and Weitz D A 2009 Janus supraparticles by induced phase separation of nanoparticles in droplets Adv. Mater.21 1949–53

[63] [63] El-Sayed H, Vineis C, Varesano A, Mowafi S, Carletto R A, Tonetti C and Taleb M A 2019 A critique on multi-jet electrospinning: state of the art and future outlook Nanotechnol. Rev.8 236–45

[64] [64] SalehHudin H S, Mohamad E N, Mahadi W N L and Afifi A M 2018 Multiple-jet electrospinning methods for nanofiber processing: a review Mater. Manuf. Process.33 479–98

[65] [65] Sun D H, Chang C, Li S and Lin L W 2006 Near-field electrospinning Nano Lett.6 839–42

[66] [66] Wang Z F, Chen X D, Zeng J, Liang F, Wu P X and Wang H 2017 Controllable deposition distance of aligned pattern via dual-nozzle near-field electrospinning AIP Adv.7 035310

[67] [67] Zhang J R et al 2019 Influence and evaluation of array-nozzle geometry on near-field electrospinning direct writing J. Eng. Fibers Fabr.14 155892501989564

[68] [68] Tian L, Zhao C C, Li J and Pan Z J 2015 Multi-needle, electrospun, nanofiber filaments: effects of the needle arrangement on the nanofiber alignment degree and electrostatic field distribution Text. Res. J.85 621–31

[69] [69] Beaudoin J, Kubaski M M, Samara M, Zednik R J and Demarquette N R 2022 Scaled-up multi-needle electrospinning process using parallel plate auxiliary electrodes Nanomaterials12 1356

[70] [70] SalehHudin H S, Mohamad E N, Mahadi W N L and Afifi A M 2021 Simulation and experimental study of parameters in multiple-nozzle electrospinning: effects of nozzle arrangement on jet paths and fiber formation J. Manuf. Process.62 440–9

[71] [71] Zheng G F, Jiang J X, Wang X, Li W W, Liu J, Fu G and Lin L W 2020 Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications Mater. Des.189 108504

[72] [72] Garca-Lpez E, Olvera-Trejo D and Velsquez-Garca L F 2017 3D printed multiplexed electrospinning sources for large-scale production of aligned nanofiber mats with small diameter spread Nanotechnology28 425302

[73] [73] Duan Y Q, Yang W L, Xiao J J, Gao J X, Wei L, Huang Y A and Yin Z P 2022 High density, addressable electrohydrodynamic printhead made of a silicon plate and polymer nozzle structure Lab Chip22 3877–84

[74] [74] Lhernould M S and Lambert P 2011 Compact polymer multi-nozzles electrospray device with integrated microfluidic feeding system J. Electrostat.69 313–9

[75] [75] Zhu M H et al 2019 Electrohydrodynamically printed high-resolution full-color hybrid perovskites Adv. Funct. Mater.29 1903294

[76] [76] Hong S, Na J W, Lee I S, Kim H T, Kang B H, Chung J and Kim H J 2020 Simultaneously defined semiconducting channel layer using electrohydrodynamic jet printing of a passivation layer for oxide thin-film transistors ACS Appl. Mater. Interfaces12 39705–12

[77] [77] Huang Y A, Ding Y J, Bian J, Su Y W, Zhou J, Duan Y Q and Yin Z P 2017 Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers Nano Energy40 432–9

[78] [78] Barton K, Mishra S, Shorter K A, Alleyne A, Ferreira P and Rogers J 2010 A desktop electrohydrodynamic jet printing system Mechatronics20 611–6

[79] [79] Wang Z F, Chen X D, Zhang J R, Lin Y-J, Li K, Zeng J, Wu P X, He Y B, Li Y and Wang H 2018 Fabrication and evaluation of controllable deposition distance for aligned pattern by multi-nozzle near-field electrospinning AIP Adv.8 075111

[80] [80] Tran S B Q, Byun D, Nguyen V D, Yudistira H T, Yu M J, Lee K H and Kim J U 2010 Polymer-based electrospray device with multiple nozzles to minimize end effect phenomenon J. Electrostat.68 138–44

[81] [81] Xu G J et al 2019 Accurate fabrication of aligned nanofibers via a double-nozzle near-field electrospinning Therm. Sci.23 2143–50

[82] [82] Wan Y-Q, Guo Q and Pan N 2004 Thermo-electro-hydrodynamic model for electrospinning process Int. J. Nonlinear Sci. Numer. Simul.5 5–8

[83] [83] Han W, Minhao L, Xin C, Junwei Z, Xindu C and Ziming Z M 2015 Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions AIP Adv.5 041302

[84] [84] Kumar A, Wei M, Barry C, Chen J and Mead J 2010 Controlling fiber repulsion in multijet electrospinning for higher throughput Macromol. Mater. Eng.295 701–8

[85] [85] Wang H, Li M H, Huang S N, Zheng J W, Chen X, Chen X D and Zhu Z M 2015 Deposition characteristics of the double nozzles near-field electrospinning Appl. Phys. A 118 621–8

[86] [86] Jin J H, Yeom S H, Lee H J, Choi C K and Lee S H 2023 The effect of nozzle spacing on the electric field and fiber size distribution in a multi-nozzle electrospinning system J. Appl. Polym. Sci.140 e53764

[87] [87] Choi K-H, Khan A, Rahman K, Doh Y-H, Kim D-S and Kwan K-R 2011 Effects of nozzles array configuration on cross-talk in multi-nozzle electrohydrodynamic inkjet printing head J. Electrostat.69 380–7

[88] [88] Kong C-S, Lee T-H, Lee K-H and Kim H-S 2009 Interference between the charged jets in electrospinning of polyvinyl alcohol J. Macromol. Sci. B 48 77–91

[89] [89] Kumar V, Srivastava A, Shanbhogue K M, Ingersol S and Sen A K 2018 Electrospray performance of interacting multi-capillary emitters in a linear array J. Micromech. Microeng.28 035005

[90] [90] SalehHudin H S, Mohamad E N, Afifi A M and Mahadi W N L W 2023 Simulation and experimental study of parameters in multiple-nozzle electrospinning: effects of voltage and nozzle configuration on the electric field and electrospun jet attributes J. Manuf. Process.85 544–55

[91] [91] Mo X M, Xu C Y, Kotaki M and Ramakrishna S 2004 Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation Biomaterials25 1883–90

[92] [92] Shin Y M, Hohman M M, Brenner M P and Rutledge G C 2001 Experimental characterization of electrospinning: the electrically forced jet and instabilities Polymer42 09955–67

[93] [93] Lee J S, Choi K H, Ghim H D, Kim S S, Chun D H, Kim H Y and Lyoo W S 2004 Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning J. Appl. Polym. Sci.93 1638–46

[94] [94] Zhao S L, Wu X H, Wang L G and Huang Y 2004 Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions J. Appl. Polym. Sci.91 242–6

[95] [95] Angammana C J and Jayaram S H 2011 The effects of electric field on the multijet electrospinning process and fiber morphology IEEE Trans. Ind. Appl.47 1028–35

[96] [96] Tian L, Li J and Pan Z J 2013 The spinning state and nanofiber orientation of the yarn produced by a novel multi-needles electrospinning Adv. Mater. Res.796 306–10

[97] [97] Sochorakis N, Grifoll J and Rosell-Llompart J 2019 Scaling up of extractor-free electrosprays in linear arrays Chem. Eng. Sci.195 281–98

[98] [98] Yang E L, Shi J J and Xue Y 2010 Influence of electric field interference on double nozzles electrospinning J. Appl. Polym. Sci.116 3688–92

[99] [99] Theron S A, Yarin A L, Zussman E and Kroll E 2005 Multiple jets in electrospinning: experiment and modeling Polymer46 2889–99

[100] [100] Regele J D, Papac M J, Rickard M J A and Dunn-Rankin D 2002 Effects of capillary spacing on EHD spraying from an array of cone jets J. Aerosol. Sci.33 1471–9

[101] [101] Si B Q T, Byun D and Lee S 2007 Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles J. Aerosol. Sci.38 924–34

[102] [102] Park B, Hong J H and Kim H 2012 Spinline behavior and web morphology in multi-nozzle electrospinning of PAN/DMF solution Fibers Polym.13 850–4

[103] [103] Lee S-H, Nguyen X H and Ko H S 2012 Study on droplet formation with surface tension for electrohydrodynamic inkjet nozzle J. Mech. Sci. Technol.26 1403–8

[104] [104] Heikkil P and Harlin A 2008 Parameter study of electrospinning of polyamide-6 Eur. Polym. J.44 3067–79

[105] [105] An S, Lee M W, Kim N Y, Lee C, Al-Deyab S S, James S C and Yoon S S 2014 Effect of viscosity, electrical conductivity, and surface tension on direct-current-pulsed drop-on-demand electrohydrodynamic printing frequency Appl. Phys. Lett.105 214102

[106] [106] Choi K-H, Rahman K, Khan A and Kim D-S 2011 Cross-talk effect in electrostatic based capillary array nozzles J. Mech. Sci. Technol.25 3053–62

[107] [107] Zhang C C, Gao C C, Chang M-W, Ahmad Z and Li J-S 2016 Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter Appl. Phys. Lett.109 151903

[108] [108] Al-Mezrakchi R Y H and Naraghi M 2018 Interfused nanofibres network in scalable manufacturing of polymeric fibres via multi-nozzle electrospinning Micro Nano Lett.13 536–40

[109] [109] Varesano A, Rombaldoni F, Mazzuchetti G, Tonin C and Comotto R 2010 Multi-jet nozzle electrospinning on textile substrates: observations on process and nanofibre mat deposition Polym. Int.59 1606–15

[110] [110] Chen R X, Wu Y K, Fan J, Wang L, Su Z B, Qin L M, Liang L B, Li Y T, Cheng J H and Liu Y 2019 Numerical approach to controlling a moving jet's vibration in an electrospinning system: an auxiliary electrode and uniform electric field J. Low Freq. Noise Vib. Act. Control38 1687–98

[111] [111] Zhu Z M et al 2019 Optimization of electric field uniformity of multi-needle electrospinning nozzle AIP Adv.9 105104

[112] [112] Peng L, Pan Y Q, Wang Z, Feng Y D and Liu Z H 2022 Design and evaluation of a linear nozzle array with double auxiliary electrodes for restraining cross-talk effect in parallel electrohydrodynamic jet printing J. Micromech. Microeng.32 105009

[113] [113] Zheng J Y, Zhou C Y, Zhang Z H, Pan Y B, Kang G Y, Jiang J X, Liu J and Zheng G F 2020 Highly efficient air-assisted multi-jet electrospinning with curved arranged spinnerets AIP Adv.10 025307

[114] [114] Zheng G F, Jiang J X, Chen D Y, Liu J, Liu Y F, Zheng J Y, Wang X and Li W W 2019 Multinozzle high efficiency electrospinning with the constraint of sheath gas J. Appl. Polym. Sci.136 47574

[115] [115] Xie S and Zeng Y C 2012 Effects of electric field on multineedle electrospinning: experiment and simulation study Ind. Eng. Chem. Res.51 5336–45

[116] [116] Yang Y, Jia Z D, Li Q, Hou L, Liu J N, Wang L M, Guan Z C and Zahn M 2010 A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret IEEE Trans. Dielectr. Electr. Insul.17 1592–601

[117] [117] Varesano A, Carletto R A and Mazzuchetti G 2009 Experimental investigations on the multi-jet electrospinning process J. Mater. Process. Technol.209 5178–85

[118] [118] Parhizkar M, Reardon P J T, Knowles J C, Browning R J, Stride E, Pedley R B, Grego T and Edirisinghe M 2017 Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles Mater. Des.126 73–84

[119] [119] Zheng Y S and Zeng Y C 2014 Jet repulsion in multi-jet electrospinning systems: from needle to needleless Adv. Mater. Res.852 624–8

[120] [120] Moon S, Jones M S, Seo E, Lee J, Lahann L, Jordahl J H, Lee K J and Lahann J 2021 3D jet writing of mechanically actuated tandem scaffolds Sci. Adv.7 eabf5289

[121] [121] Zheng Y S, Gong R H and Zeng Y C 2015 Multijet motion and deviation in electrospinning RSC Adv.5 48533–40

[122] [122] Zheng Y S and Zeng Y C 2014 Electric field analysis of spinneret design for multihole electrospinning system J. Mater. Sci.49 1964–72

[123] [123] Zheng Y S, Zhuang C M, Gong R H and Zeng Y C 2014 Electric field design for multijet electropsinning with uniform electric field Ind. Eng. Chem. Res.53 14876–84

[124] [124] Zhu Z M et al 2018 Uniform electric field enabled multi-needles electrospinning head based on trapezoid arrangement AIP Adv.8 085126

[125] [125] Yu Z J, Lin Y H, Huang W W, Zhuang M F, Hong Y Q, Zheng G F and Sun D H 2014 Multi spinnerets electrospinning with assistant sheath gas The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (IEEE) pp 64–67

[126] [126] Yan W-C, Tong Y W and Wang C-H 2017 Coaxial electrohydrodynamic atomization toward large scale production of core-shell structured microparticles AIChE J.63 5303–19

[127] [127] Kim G H, Cho Y-S and Kim W D 2006 Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode Eur. Polym. J.42 2031–8

[128] [128] Pan Y Q, Huang Y A, Guo L, Ding Y J and Yin Z P 2015 Addressable multi-nozzle electrohydrodynamic jet printing with high consistency by multi-level voltage method AIP Adv.5 047108

[129] [129] Zhu Z M et al 2019 A new circular spinneret system for electrospinning numerical approach and electric field optimization Therm. Sci.23 2229–35

[130] [130] Jiang J X, Zheng G F, Wang X, Li W W, Kang G Y, Chen H T, Guo S M and Liu J 2020 Arced multi-nozzle electrospinning spinneret for high-throughput production of nanofibers Micromachines11 27

[131] [131] Yang W L, Duan Y Q, Gao J X and Yin Z P 2023 Crosstalk elimination for large-scale, high-density electrohydrodynamic printing via optimization of nozzle material and structure Addit. Manuf.77 103815

[132] [132] Liu Y B and Guo L L 2013 Homogeneous field intensity control during multi-needle electrospinning via finite element analysis and simulation J. Nanosci. Nanotechnol.13 843–7

[133] [133] Zhou F-L, Gong R-H and Porat I 2010 Needle and needleless electrospinning for nanofibers J. Appl. Polym. Sci.115 2591–8

[134] [134] Zheng Y S, Xie S and Zeng Y C 2013 Electric field distribution and jet motion in electrospinning process: from needle to hole J. Mater. Sci.48 6647–55

[135] [135] Zheng Y S, Liu X K and Zeng Y C 2013 Electrospun nanofibers from a multihole spinneret with uniform electric field J. Appl. Polym. Sci.130 3221–8

[136] [136] Khan A, Rahman K, Ali S, Khan S, Wang B and Bermak A 2021 Fabrication of circuits by multi-nozzle electrohydrodynamic inkjet printing for soft wearable electronics J. Mater. Res.36 3568–78

[137] [137] Wang X, Niu H T, Lin T and Wang X G 2009 Needleless electrospinning of nanofibers with a conical wire coil Polym. Eng. Sci.49 1582–6

[138] [138] Wang B, Yao Y Y, Peng J R, Lin Y, Liu W L, Luo Y, Xiang R L, Li R X and Wu D C 2009 Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinning J. Appl. Polym. Sci.114 883–91

[139] [139] Zhao Y, Jiang J X, Li W W, Wang X, Zhang K, Zhu P and Zheng G F 2016 Electrospinning jet behaviors under the constraints of a sheath gas AIP Adv.6 115022

[140] [140] Wojasiski M, Goawski J and Ciach T 2017 Blow-assisted multi-jet electrospinning of poly-L-lactic acid nanofibers J. Polym. Res.24 76

[141] [141] Hou J Q, Zhang G M, Yv Z H, Li Y, Ma L X, Han Z F, Shi K, Guo C X and Lan H B 2024 Method and laws of high-efficient micro-scale 3D printing with multi-nozzle driven by electric field of flat plate electrodes J. Mech. Eng.60 310–20

[142] [142] Li L R, Yang W W, Zhao X Y and Deng W W 2020 Multiplexed electrospray emitters fabricated by rapid laser micromachining J. Aerosol Sci.150 105616

[143] [143] Krpoun R and Shea H R 2008 A method to determine the onset voltage of single and arrays of electrospray emitters J. Appl. Phys.104 064511

[144] [144] Lojewski B, Yang W W, Duan H X, Xu C Y and Deng W W 2013 Design, fabrication, and characterization of linear multiplexed electrospray atomizers micro-machined from metal and polymers Aerosol Sci Technol.47 146–52

[145] [145] Olvera-Trejo D and Velsquez-Garca L F 2016 Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core–shell microparticles Lab Chip16 4121–32

[146] [146] Pan Y Q, Huang Y A, Bu N B and Yin Z P 2013 Fabrication of Si-nozzles for parallel mechano-electrospinning direct writing J. Phys. D: Appl. Phys.46 255301

[147] [147] Khan A, Rahman K, Hyun M-T, Kim D-S and Choi K-H 2011 Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures Appl. Phys. A 104 1113–20

[148] [148] Khan A, Rahman K, Kim D S and Choi K H 2012 Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process J. Mater. Process. Technol.212 700–6

[149] [149] Takagi M F 2013 Electrohydrodynamic Jet Printing: Advancements in Manufacturing Applications (University of Illinois at Urbana)

[150] [150] Deng W W, Klemic J F, Li X H, Reed M A and Gomez A 2006 Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets J. Aerosol Sci.37 696–714

[151] [151] Wang L, Stevens R, Malik A, Rockett P, Paine M, Adkin P, Martyn S, Smith K, Stark J and Dobson P 2007 High-aspect-ratio silica nozzle fabrication for nano-emitter electrospray applications Microelectron. Eng.84 1190–3

[152] [152] Mukhopadhyay D and Ferreira P M 2007 Exploiting differential etch rates to fabricate large-scale nozzle arrays with protudent geometry J. Micromech. Microeng.17 923–30

[153] [153] Lee J-S, Kim S-Y, Kim Y-J, Park J, Kim Y, Hwang J and Kim Y-J 2008 Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing Appl. Phys. Lett.93 243114

[154] [154] De Leon P J P, Hill F A, Heubel E V and Velsquez-Garca L F 2015 Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays Nanotechnology26 225301

[155] [155] Lee S, Byun D, Jung D, Choi J, Kim Y, Yang J H, Son S U, Tran S B Q and Ko H S 2008 Pole-type ground electrode in nozzle for electrostatic field induced drop-on-demand inkjet head Sens. Actuators A 141 506–14

[156] [156] Lee J S, Kim Y J, Kang B G, Kim S Y, Park J, Hwang J and Kim Y J 2009 Electrohydrodynamic jet printing capable of removing substrate effects and modulating printing characteristics 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (IEEE) pp 487–90

[157] [157] Yang W L, Duan Y Q, Gao J X, Li H Y, Huang Y A and Yin Z P 2022 Addressable electrohydrodynamic jetting via tuning the potential drop of liquid within the printhead Phys. Fluids34 092005

[158] [158] Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M and Gaa-Calvo A M 2002 Micro/nano encapsulation via electrified coaxial liquid jets Science295 1695–8

[159] [159] Zhu M H, Liu W W, Ke W J, Xie L S, Dong P and Hao F 2019 Graphene-modified tin dioxide for efficient planar perovskite solar cells with enhanced electron extraction and reduced hysteresis ACS Appl. Mater. Interfaces11 666–73

[160] [160] Krebs F C 2009 Fabrication and processing of polymer solar cells: a review of printing and coating techniques Sol. Energy Mater. Sol. Cells93 394–412

[161] [161] Liu Y, Li F S, Qiu L C, Yang K Y, Li Q Q, Zheng X, Hu H L, Guo T L, Wu C X and Kim T W 2019 Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing ACS Nano13 2042–9

[162] [162] Dziemidowicz K et al 2021 Electrospinning for healthcare: recent advancements J. Mater. Chem. B 9 939–51

[163] [163] Yan X, Yu M, Ramakrishna S, Russell S J and Long Y-Z 2019 Advances in portable electrospinning devices for in situ delivery of personalized wound care Nanoscale11 19166–78

[164] [164] Almera B, Fahmy T M and Gomez A 2011 A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery J. Control. Release154 203–10

[165] [165] Lyu C X, Zhao P, Xie J, Dong S Y, Liu J W, Rao C C and Fu J Z 2021 Electrospinning of nanofibrous membrane and its applications in air filtration: a review Nanomaterials11 1501

[166] [166] Chen M J, Lee H, Yang J, Xu Z Y, Huang N, Chan B P and Kim J T 2020 Parallel, multi-material electrohydrodynamic 3D nanoprinting Small16 1906402

[167] [167] Dou Y B, Zhang W J and Kaiser A 2020 Electrospinning of metal–organic frameworks for energy and environmental applications Adv. Sci.7 1902590

[168] [168] Liu Q, Zhu J H, Zhang L W and Qiu Y J 2018 Recent advances in energy materials by electrospinning Renew. Sustain. Energy Rev.81 1825–58

[169] [169] Rosenberger A G, Dragunski D C, Muniz E C, Mdenes A N, Alves H J, Tarley C R T, Machado S A S and Caetano J 2020 Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes J. Mol. Liq.298 112068

[170] [170] Liyanage A A H, Biswas P K, Dalir H and Agarwal M 2023 Engineering uniformity in mass production of MWCNTs/epoxy nanofibers using a lateral belt-driven multi-nozzle electrospinning technique to enhance the mechanical properties of CFRPs Polym. Test.118 107883

[171] [171] Tang J, Wu Y T, Ma S D, Yan T and Pan Z J 2022 Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage Composites B 232 109605

[172] [172] Almera B, Deng W W, Fahmy T M and Gomez A 2010 Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery J. Colloid Interface Sci.343 125–33

[173] [173] Mosa M A, Bang J, Jo J Y, Lee J-S and Kwon K-S 2023 Continuous ink supply and circulation system for a multi-nozzle electrospray Jpn. J. Appl. Phys.62 SE1001

[174] [174] Chaaban J 2021 On Droplet Microfluidics and Security Feature Microfabrication with Scalable Electrohydrodynamic Nanoprinting (ETH Zurich)

[175] [175] Khan A, Ali S, Khan S and Bermak A Rapid fabrication of soft strain sensors by multi-nozzle electrohydrodynamic inkjet printing for wearable electronics 2021 IEEE International Symposium on Circuits and Systems (IEEE) pp 1–4

[176] [176] Diaz R S, De-Juan-Pardo E M, Dalton P D and Dargaville T R 2023 Semi-woven structures via dual nozzle melt electrowriting Macromol. Mater. Eng.308 2200526

[177] [177] Lee J, Moon S, Han Y B, Yang S J, Lahann J and Lee K J 2022 Facile fabrication of anisotropic multicompartmental microfibers using charge reversal electrohydrodynamic co-jetting Macromol. Rapid Commun.43 2100560

[178] [178] Hu T X, Shen X, Peng L Q, Liu Y Z, Wang X, Ma H S, Zhang P and Zhao J B 2021 Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries J. Phys. Chem. Solids158 110229

[179] [179] Scaffaro R, Lopresti F and Botta L 2017 Preparation, characterization and hydrolytic degradation of PLA/PCL co-mingled nanofibrous mats prepared via dual-jet electrospinning Eur. Polym. J.96 266–77

[180] [180] Lee E-J, An A K, Hadi P, Lee S, Woo Y C and Shon H K 2017 Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation J. Membr. Sci.524 712–20

[181] [181] Robinson T M, Hutmacher D W and Dalton P D 2019 The next frontier in melt electrospinning: taming the jet Adv. Funct. Mater.29 1904664

[182] [182] Skylar-Scott M A, Mueller J, Visser C W and Lewis J A 2019 Voxelated soft matter via multimaterial multinozzle 3D printing Nature575 330–5

[183] [183] Wang F J, Elbadawi M, Tsilova S L, Gaisford S, Basit A W and Parhizkar M 2022 Machine learning to empower electrohydrodynamic processing Mater. Sci. Eng. C 132 112553

[184] [184] Gao W Q, Jiang J X, Wang X, Li W W and Zheng G F 2023 State recognition of multi-nozzle electrospinning based on image processing Micromachines14 529

[185] [185] Yang X, Jiang X Y, Yin Z F, Chen K, Cheng E, Zou H L and Wang D F. 2019 An economic and concise method to solve nozzle clogging issue during electro hydrodynamic printing Int. J. Mod. Phys. B 33 1950260

Tools

Get Citation

Copy Citation Text

Li Yin, Zhang Guangming, Zhang Jinrun, Song Daosen, Guo Chenxu, Zhou Wei, Fu Zhiguo, Zhu Xiaoyang, Wang Fei, Duan Yongqing, Dong Jingyan, Lan Hongbo. Advanced multi-nozzle electrohydrodynamic printing: mechanism, processing, and diverse applications at micro/nano-scale[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 12008

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category: Topical Review

Received: May. 3, 2024

Accepted: Apr. 17, 2025

Published Online: Apr. 17, 2025

The Author Email:

DOI:10.1088/2631-7990/ad8d22

Topics