Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 7, 921(2021)

Photoalignment enabled liquid crystal microstructures for optics and photonics

CAO Hui-min1、*, WU Sai-bo1, WANG Jing-ge2, and HU Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(58)

    [5] [5] WANG L, GUTIERREZ-CUEVAS K G, BISOYI H K, et al. NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods [J]. Chemical Communications, 2015, 51(81): 15039-15042.

    [6] [6] MA L L, HU W, ZHENG Z G, et al. Light-activated liquid crystalline hierarchical architecture toward photonics [J]. Advanced Optical Materials, 2019, 7(16): 1900393.

    [9] [9] KIM Y H, YOON D K, JEONG H S, et al. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications [J]. Advanced Functional Materials, 2011, 21(4): 610-627.

    [11] [11] OK J M, KIM Y H, LEE T Y, et al. Controlling smectic liquid crystal defect patterns by physical stamping-assisted domain separation and their use as templates for quantum dot cluster arrays [J]. Langmuir, 2016, 32(50): 13418-13426.

    [12] [12] ROI B, FRESNAIS J, MOLINARO C, et al. Oriented gold nanorods and gold nanorod chains within smectic liquid crystal topological defects [J]. ACS Nano, 2017, 11(7): 6728-6738.

    [13] [13] SERRA F, GHARBI M A, LUO Y M, et al. Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses [J]. Advanced Optical Materials, 2015, 3(9): 1287-1292.

    [14] [14] KIM D S, CHA Y J, KIM H, et al. Creation of a superhydrophobic surface from a sublimed smectic liquid crystal [J]. RSC Advances, 2014, 4(51): 26946-26950.

    [15] [15] MEYER C, JONCKHEERE B, PENAUD C. The construction of the dupin cyclides in a smectic a polygonal texture [J]. Journal of Materials, 2014, 2014: 145375.

    [16] [16] KLEMAN M, LAVRENTOVICH O D. Curvature energy of a focal conic domain with arbitrary eccentricity [J]. Physical Review E, 2000, 61(2): 1574-1578.

    [17] [17] RYU S H, GIM M J, CHA Y J, et al. Creation of liquid-crystal periodic zigzags by surface treatment and thermal annealing [J]. Soft Matter, 2015, 11(44): 8584-8589.

    [18] [18] SHIN M J, GIM M J, YOON D K, et al. Directed self-assembly of topological defects of liquid crystals [J]. Langmuir, 2018, 34(7): 2551-2556.

    [19] [19] KIM D S, CHA Y J, KIM M H, et al. Controlling Gaussian and mean curvatures at microscale by sublimation and condensation of smectic liquid crystals [J]. Nature Communications, 2016, 7: 10236.

    [20] [20] MA L L, TANG M J, HU W, et al. Smectic layer origami via preprogrammed photoalignment [J]. Advanced Materials, 2017, 29(15): 1606671.

    [21] [21] KIM Y H, LEE J O, JEONG H S, et al. Optically selective microlens photomasks using self-assembled smectic liquid crystal defect arrays [J]. Advanced Materials, 2010, 22(22): 2416-2420.

    [22] [22] MA L L, WU S B, HU W, et al. Self-assembled asymmetric microlenses for four-dimensional visual imaging [J]. ACS Nano, 2019, 13(12): 13709-13715.

    [23] [23] WU S B, MA L L, CHEN P, et al. Smectic defect engineering enabled by programmable photoalignment [J]. Advanced Optical Materials, 2020, 8(17): 2000593.

    [24] [24] MA L L, LI S S, LI W S, et al. Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals [J]. Advanced Optical Materials, 2015, 3(12): 1691-1696.

    [25] [25] MA L L, DUAN W, TANG M J, et al. Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film [J]. Polymers, 2017, 9(7): 295.

    [26] [26] YUAN C L, HUANG W B, ZHENG Z G, et al. Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices [J]. Science Advances, 2019, 5(10): eaax9501.

    [31] [31] ZHANG H R, MA L L, ZHANG Q, et al. Azobenzene sulphonic dye photoalignment as a means to fabricate liquid crystalline conjugated polymer chain-orientation-based optical structures [J]. Advanced Optical Materials, 2020, 8(8): 1901958.

    [32] [32] CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2020, 32(27): 1903665.

    [33] [33] HU W, KUMAR SRIVASTAVA A, LIN X W, et al. Polarization independent liquid crystal gratings based on orthogonal photoalignments [J]. Applied Physics Letters, 2012, 100(11): 111116.

    [34] [34] HU W, SRIVASTAVA A, XU F, et al. Liquid crystal gratings based on alternate TN and PA photoalignment [J]. Optics Express, 2012, 20(5): 5384-5391.

    [35] [35] LI J N, HU X K, WEI B Y, et al. Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions [J]. Applied Optics, 2014, 53(22): E14-E18.

    [38] [38] SRIVASTAVA A K, HU W, CHIGRINOV V G, et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals [J]. Applied Physics Letters, 2012, 101(3): 031112.

    [39] [39] HECKENBERG N R, MCDUFF R, SMITH C P, et al. Generation of optical phase singularities by computer-generated holograms [J]. Optics Letters, 1992, 17(3): 221-223.

    [40] [40] FRANKE-ARNOLD S, ALLEN L, PADGETT M. Advances in optical angular momentum [J]. Laser & Photonics Review, 2008, 2(4): 299-313.

    [41] [41] WEI B Y, HU W, MING Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals [J]. Advanced Materials, 2014, 26(10): 1590-1595.

    [42] [42] MA Y, WEI B Y, SHI L Y, et al. Fork gratings based on ferroelectric liquid crystals [J]. Optics Express, 2016, 24(6): 5822-5828.

    [43] [43] ZHOU C H, LIU L R. Numerical study of Dammann array illuminators [J]. Applied Optics, 1995, 34(26): 5961-5969.

    [44] [44] WANG X Q, SRIVASTAVA A K, FAN F, et al. Electrically/optically tunable photo-aligned hybrid nematic liquid crystal Dammann grating [J]. Optics Letters, 2016, 41(24): 5668-5671.

    [45] [45] FAN F, YAO L S, WANG X Q, et al. Ferroelectric liquid crystal dammann grating by patterned photoalignment [J]. Crystals, 2017, 7(3): 79.

    [46] [46] LUO D, SUN X W, DAI H T, et al. Polarization-dependent circular Dammann grating made of azo-dye-doped liquid crystals [J]. Applied Optics, 2011, 50(15): 2316-2321.

    [47] [47] LEI T, ZHANG M, LI Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings [J]. Light: Science & Applications, 2015, 4(3): e257.

    [48] [48] CHEN P, GE S J, MA L L, et al. Generation of equal-energy orbital angular momentum beams via photopatterned liquid crystals [J]. Physical Review Applied, 2016, 5(4): 044009.

    [49] [49] DUAN W, CHEN P, WEI B Y, et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating [J]. Optical Materials Express, 2016, 6(2): 597-602.

    [50] [50] DU T, FAN F, TAM A M W, et al. Complex nanoscale-ordered liquid crystal polymer film for high transmittance holographic polarizer [J]. Advanced Materials, 2015, 27(44): 7191-7195.

    [51] [51] JI W, LEE C H, CHEN P, et al. Meta-q-plate for complex beam shaping [J]. Scientific Reports, 2016, 6: 25528.

    [52] [52] CHEN P, WEI B Y, JI W, et al. Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings [J]. Photonics Research, 2015, 3(4): 133-139.

    [53] [53] CHEN P, GE S J, DUAN W, et al. Digitalized geometric phases for parallel optical spin and orbital angular momentum encoding [J]. ACS Photonics, 2017, 4(6): 1333-1338.

    [54] [54] XU R, CHEN P, TANG J, et al. Perfect higher-order poincaré sphere beams from digitalized geometric phases [J]. Physical Review Applied, 2018, 10(3): 034061.

    [55] [55] ZHANG Y H, CHEN P, GE S J, et al. Spin-controlled massive channels of hybrid-order Poincaré sphere beams [J]. Applied Physics Letters, 2020, 117(8): 081101.

    [56] [56] KOBASHI J, YOSHIDA H, OZAKI M. Planar optics with patterned chiral liquid crystals [J]. Nature Photonics, 2016, 10(6): 389-392.

    [57] [57] BARBOZA R, BORTOLOZZO U, CLERC M G, et al. Berry phase of light under Bragg reflection by chiral liquid-crystal media [J]. Physical Review Letters, 2016, 117(5): 053903.

    [58] [58] KOBASHI J, YOSHIDA H, OZAKI M. Polychromatic optical vortex generation from patterned cholesteric liquid crystals [J]. Physical Review Letters, 2016, 116(25): 253903.

    [59] [59] RAFAYELYAN M, TKACHENKO G, BRASSELET E. Reflective spin-orbit geometric phase from chiral anisotropic optical media [J]. Physical Review Letters, 2016, 116(25): 253902.

    [60] [60] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics [J]. Nature Communications, 2019, 10(1): 2518.

    [61] [61] WEI B Y, CHEN P, GE S J, et al. Liquid crystal depolarizer based on photoalignment technology [J]. Photonics Research, 2016, 4(2): 70-73.

    [62] [62] WEI T, CHEN P, TANG M J, et al. Liquid-crystal-mediated active waveguides toward programmable integrated optics [J]. Advanced Optical Materials, 2020, 8(10): 1902033.

    [63] [63] CHEN P, MA L L, DUAN W, et al. Digitalizing self-assembled chiral superstructures for optical vortex processing [J]. Advanced Materials, 2018, 30(10): 1705865.

    [65] [65] WANG L, LIN X W, HU W, et al. Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes [J]. Light: Science & Applications, 2015, 4(2): e253.

    [66] [66] WANG L, GE S J, CHEN Z X, et al. Bridging the terahertz near-field and far-field observations of liquid crystal based metamaterial absorbers [J]. Chinese Physics B, 2016, 25(9): 094222.

    [67] [67] GE S J, LIU J C, CHEN P, et al. Tunable terahertz filter based on alternative liquid crystal layers and metallic slats [J]. Chinese Optics Letters, 2015, 13(12): 120401.

    [69] [69] SHEN Z X, ZHOU S H, LI X A, et al. Liquid crystal integrated metalens with tunable chromatic aberration [J]. Advanced Photonics, 2020, 2(3): 036002.

    [70] [70] SHEN Z X, TANG M J, CHEN P, et al. Planar terahertz photonics mediated by liquid crystal polymers [J]. Advanced Optical Materials, 2020, 8(7): 1902124.

    Tools

    Get Citation

    Copy Citation Text

    CAO Hui-min, WU Sai-bo, WANG Jing-ge, HU Wei. Photoalignment enabled liquid crystal microstructures for optics and photonics[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(7): 921

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 6, 2021

    Accepted: --

    Published Online: Sep. 4, 2021

    The Author Email: CAO Hui-min (ccaohuimin@163.com)

    DOI:10.37188/cjlcd.2021-0004

    Topics