The Journal of Light Scattering, Volume. 32, Issue 3, 266(2020)

Embedding Metal Nanoparticles to Increase the Absorption Rate of Crystalline Silicon Thin Film Solar Cells

XIAO Liang* and ZHU Qunzhi
Author Affiliations
  • [in Chinese]
  • show less
    References(14)

    [1] [1] Haase C, Stiebig H. Thin-film silicon solar cells with efficient periodic light trapping texture[J].Applied Physics Letters, 2007, 91(6): 061116(1)-061116(3).

    [2] [2] Shi B, Wang W, Yu X, et al.Enhancement of optical absorption in silicon thin-film solar cells with metal nanoparticles[J]. Optical Engineering, 2017, 56(5): 057105(1)- 057105(7).

    [3] [3] Yang Y, Pillai S, Mehrvarz H, et al. Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell[J]. Solar Energy Materials and Solar Cells, 2014, 122: 208-216.

    [5] [5] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J].Nature Materials, 2010, 9(3): 205-213.

    [6] [6] Pala R A, White J, Barnard E,et al. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements[J]. Advanced Materials, 2009, 21(34): 3504-3509.

    [7] [7] Temple T L, Mahanama G D K, Reehal H S, et al. Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells[J].Solar Energy Materials and Solar Cells, 2009, 93(11): 1978-1985.

    [8] [8] Starowicz Z, Kedra A, Berent K, et al. Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications[J].Solar Energy, 2017, 158: 610-616.

    [9] [9] Tan H, Santbergen R, Smets A H M, et al. Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-Assembled Silver Nanoparticles[J].Nano Letters, 2012, 12(8): 4070-4076.

    [10] [10] Axelevitch A. Application of gold nano-particles for silicon solar cells efficiency increase[J].Applied Surface Science, 2014, 315: 523-526.

    [11] [11] Jain S, Depauw V, Miljkovic V D, et al. Broadband absorption enhancement in ultra‐thin crystalline Si solar cells by incorporating metallic and dielectric nanostructures in the back reflector[J].Progress in Photovoltaics: Research and Applications, 2015, 23(9): 1144-1156.

    [12] [12] Li Y, Yan X, Wu Y, et al. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells[J]. Nanoscale Research Letters, 2015, 10(1): 4361-4367.

    [13] [13] Zhou Y P, He Y L, Hu Y H, et al.The coupling effects of the different carrier generation rate distributions and recombination caused by nanostructures on the all-back-contact ultra-thin silicon solar cell performances[J]. Energy Conversion and Management, 2019, 187: 537-545.

    [14] [14] J. E. Moore, W. Yoon, P. P. Jenkins, R. J. Walters. Simulation of Light Trapping in Ultra-thin Crystalline Silicon Absorber with Silver Nanodisc Back Reflector[J].2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, 2018. 2909-2912.

    [15] [15] Omrani M K, Fallah H. Improving light trapping of polymer solar cell via doping a new array of triple core-shell spherical nanoparticles utilizing realistic modeling[J].Solar Energy, 2018, 163: 600-609.

    Tools

    Get Citation

    Copy Citation Text

    XIAO Liang, ZHU Qunzhi. Embedding Metal Nanoparticles to Increase the Absorption Rate of Crystalline Silicon Thin Film Solar Cells[J]. The Journal of Light Scattering, 2020, 32(3): 266

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 13, 2019

    Accepted: --

    Published Online: Jan. 28, 2021

    The Author Email: Liang XIAO (xialiang_light@163.com)

    DOI:10.13883/j.issn1004-5929.202003011

    Topics