Acta Optica Sinica, Volume. 45, Issue 1, 0122001(2025)

Design of Snapshot Hyperspectral Polarization Zoom Imaging Optical System

Haodong Shi1,2, Ruihan Fan1,2、*, Jiayu Wang1,2, Qi Wang1,2, Sheng Jiang3, Yufang Wu2, Yingchao Li1,2, and Qiang Fu1,2
Author Affiliations
  • 1Jilin Provincial Key Laboratory of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 3School of Physics, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • show less
    Figures & Tables(19)
    Schematic diagram of basic architecture of snapshot hyperspectral polarization two-speed zoom imaging optical system
    Design block diagram. (a) Data flow; (b) system architecture; (c) design process
    Relationship among minimum resolution wavelength, relay mirror focal length, and pixel matching ratio of DMD to MPA of detector
    Two-dimensional structure diagrams of front zoom objective. (a) Schematic diagram of two-dimensional structure of short focus pre-zoom objective; (b) schematic diagram of two-dimensional structure of long focus pre-zoom objective
    2D structure diagram of back group dispersive polarization imaging system
    Overall two-dimensional structure of snapshot hyperspectral polarization two-speed zoom imaging optical system. (a) Overall two-dimensional structure of system; (b) footprint of system image plane
    MTF diagrams of snapshot hyperspectral polarization two-speed zoom imaging optical system. (a) MTF curves of short focus system; (b) MTF curves of long focus system
    Spectral resolution curves of snapshot hyperspectral polarization two-speed zoom imaging optical system, and adjacent spectrum point diagrams and FWHMs for short and long focus states. (a) Spectral resolution curves; (b) adjacent spectrum point diagram for short focus state; (c) adjacent spectrum point diagram for long focus state; (d) 400 nm FWHM for short focus state; (e) 400 nm FWHM for long focus state
    Proof-of-principle experimental system
    Test diagram of polarization-preserving ability. (a) Experimental field diagram; (b) 0° polarized light imaging result at 532 nm; (c) 45° polarized light imaging result at 532 nm; (d) 90° polarized light imaging result at 532 nm; (e) 135° polarized light imaging result at 532 nm
    Resolution plate imaging effects. (a) Resolution board picture; (b) image captured in short focus state after unmixing and reconstruction; (c) image captured in long focus state after unmixing and reconstruction
    Spectral images of color pens. (a) Picture of color pens; (b) comparison of measured reflectancec of commercial spectrometer and built system; (c) spectral images of color pens
    Field vehicle imaging capability experiment. (a) 100 DOLP spectral slice images; (b) experimental field diagram; (c) image captured by ordinary imaging camera; (d) 0°@532 nm image; (e) 45°@532 nm image; (f) 90°@532 nm image; (g) 135°@532 nm image; (h) DOLP@532 nm image
    • Table 1. System design parameter requirements

      View table

      Table 1. System design parameter requirements

      SpecificationType or value
      Detector typeCMOS (MER-502-79U3M POL)
      Resolution2448×2048
      Pixel size /μm3.45
      Wavelength range /nm400‒650
      Horizontal field angle /(°)

      Short focus: 8

      Long focus: 2.5

      Zoom ratio3
    • Table 2. System tolerance allocation

      View table

      Table 2. System tolerance allocation

      ComponentParameterValue
      Conventional lensSurface irregularity /fringe±0.25
      Thickness /mm±0.025
      Radius of curvature /fringe±2
      Surface decenter /mm±0.025
      Surface tilt /(′)±0.8
      Element decenter /mm±0.025
      Element tilt /(′)±0.8
      Conic±0.008
      DMDElement decenter /mm±0.03
      Element tilt /(′)±0.8
      Prism-grating-prismPosition accuracy /mm±0.1
      Element decenter /mm±0.025
      Element tilt /(′)±0.8
    • Table 3. Tolerance allocation of individual elements of front zoom objective

      View table

      Table 3. Tolerance allocation of individual elements of front zoom objective

      TypeLens (surface)Value
      TFRN /fringeLens 6 (15‒17)/Lens 7 (18‒19)/Lens 10 (24‒25)±1
      TSDX/TSDY /mmLens 6 (15‒17)/Lens 7 (18‒19)/Lens 8 (20‒21)/Lens 10 (24‒25)±0.008
      TSTX/TSTY /(′)Lens 6 (15‒17)/Lens 7 (18‒19)/Lens 9 (22‒23)/Lens 10(24‒25)±0.4
      TEDX/TEDY /mmLens 6 (15‒17)/Lens 7 (18‒19)/Lens 9 (22‒23)/Lens 10 (24‒25)±0.008
      TETX/TETY /(′)Lens 6 (15‒17)/Lens 8 (20‒21)/Lens 9 (22‒23)/Lens 10(24‒25)±0.4
      TIRR /fringeLens 3 (8‒9)/Lens 6 (15‒17)/Lens 7 (18‒19)/Lens 10 (24‒25)±0.1
    • Table 4. Monte Carlo tolerance analysis results

      View table

      Table 4. Monte Carlo tolerance analysis results

      Probability /%MTF at 144 lp/mm
      Short focusLong focus
      400 nm450 nm500 nm550 nm600 nm650 nm400 nm450 nm500 nm550 nm600 nm650 nm
      >900.2060.2240.2410.2230.1840.1270.2050.2180.2390.2210.1530.112
      >800.2300.2390.2740.2450.1950.1350.2280.2390.2550.2470.1780.131
      >500.2610.2710.3070.2640.2190.1530.2400.2520.2820.2650.1980.142
      >100.2870.3010.3370.2930.2380.1810.2750.2920.3200.2990.2130.172
    • Table 5. System DOLP deviation values

      View table

      Table 5. System DOLP deviation values

      Polarized angle /(°)Incident light DOLPEmerging light DOLPDOLP error valueMaximum error of DOLP /%
      450 nm532 nm632.8 nm450 nm532 nm632.8 nm
      010.9600.9560.9590.0400.0440.0414.4
      4510.9570.9520.9710.0430.0480.0294.8
      9010.9530.9610.9630.0470.0390.0374.7
      13510.9640.9570.9680.0360.0430.0324.3
    • Table 6. Contrast between different positions of car and rear car

      View table

      Table 6. Contrast between different positions of car and rear car

      ObjectIntensityDOLPContrast enhancement
      Car head52.9879.6650.36
      Car roof32.5080.72148.37
      Car tail41.6582.5498.18
    Tools

    Get Citation

    Copy Citation Text

    Haodong Shi, Ruihan Fan, Jiayu Wang, Qi Wang, Sheng Jiang, Yufang Wu, Yingchao Li, Qiang Fu. Design of Snapshot Hyperspectral Polarization Zoom Imaging Optical System[J]. Acta Optica Sinica, 2025, 45(1): 0122001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Jul. 27, 2024

    Accepted: Sep. 11, 2024

    Published Online: Jan. 21, 2025

    The Author Email: Fan Ruihan (fanruihan2000@163.com)

    DOI:10.3788/AOS241368

    CSTR:32393.14.AOS241368

    Topics