Chinese Journal of Lasers, Volume. 49, Issue 19, 1906004(2022)

Review on Stimulated Brillouin Scattering Effects and Their Applications in Integrated Optical Gyroscopes

Chenchen Liu, Chengchun Gao, He Yang*, Xiaobin Xu, and Ningfang Song
Author Affiliations
  • School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    References(125)

    [1] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J]. Physical Review Letters, 12, 592-595(1964).

    [2] Kang M S, Nazarkin A, Brenn A et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators[J]. Nature Physics, 5, 276-280(2009).

    [3] Dainese P, Russell P S J, Joly N et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres[J]. Nature Physics, 2, 388-392(2006).

    [4] Grudinin I S, Matsko A B, Maleki L. Brillouin lasing with a CaF2 whispering gallery mode resonator[J]. Physical Review Letters, 102, 043902(2009).

    [5] Tomes M, Carmon T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates[J]. Physical Review Letters, 102, 113601(2009).

    [6] Yang K Y, Oh D Y, Lee S H et al. Bridging ultrahigh-Q devices and photonic circuits[J]. Nature Photonics, 12, 297-302(2018).

    [7] Gundavarapu S, Brodnik G M, Puckett M et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser[J]. Nature Photonics, 13, 60-67(2019).

    [8] Lee H, Chen T, Li J et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip[J]. Nature Photonics, 6, 369-373(2012).

    [9] Pant R, Poulton C G, Choi D Y et al. On-chip stimulated Brillouin scattering[J]. Optics Express, 19, 8285-8290(2011).

    [10] Shin H, Cox J A, Jarecki R et al. Control of coherent information via on-chip photonic-phononic emitter-receivers[J]. Nature Communications, 6, 6427(2015).

    [11] van Laer R, Kuyken B, van Thourhout D et al. Interaction between light and highly confined hypersound in a silicon photonic nanowire[J]. Nature Photonics, 9, 199-203(2015).

    [12] Hagenlocker E E, Rado W G. Stimulated Brillouin and Raman scattering in gases[J]. Applied Physics Letters, 7, 236-238(1965).

    [13] Yang F, Gyger F, Thevenaz L. Giant Brillouin amplification in gas using hollow-core waveguides[C], SF2P.1(2020).

    [14] She C Y, Herring G C, Moosmüller H et al. Stimulated Rayleigh-Brillouin gain spectroscopy in pure gases[J]. Physical Review Letters, 51, 1648(1983).

    [15] Manteghi A, Dam N J, Meijer A S et al. Spectral narrowing in coherent Rayleigh-Brillouin scattering[J]. Physical Review Letters, 107, 173903(2011).

    [16] Mountain R D. Spectral distribution of scattered light in a simple fluid[J]. Reviews of Modern Physics, 38, 205-214(1966).

    [17] Dahan R, Martin L L, Carmon T. Droplet optomechanics[J]. Optica, 3, 175-178(2016).

    [18] Shi C D, Sheng Q, Fu S J et al. Power scaling and spectral linewidth suppression of hybrid Brillouin/thulium fiber laser[J]. Optics Express, 28, 2948-2955(2020).

    [19] Huang Y L, Li Q, Han J Y et al. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity[J]. Optica, 6, 1491-1497(2019).

    [20] Zhu K Y, He J Y, Chang K et al. The multi-wavelength Brillouin laser based on highly nonlinear fiber[J]. Proceedings of SPIE, 12169, 1216935(2022).

    [21] Tehranchi A, Kashyap R. Theoretical investigations of power fluctuations statistics in Brillouin erbium-doped fiber lasers[J]. Optics Express, 27, 37508-37515(2019).

    [22] Okawa Y, Yamashita R K, Kishi M et al. Analysis of Brillouin dynamic grating localized by intensity-modulated correlation-domain technique for distributed fiber sensing[J]. Optics Express, 28, 6981-6994(2020).

    [23] Qiu L Q, Chu Q, Li T F et al. Dynamic distributed Brillouin optical fiber pressure sensor[J]. Proceedings of SPIE, 11850, 118500F(2021).

    [24] Wu J F, Puckett M W, Tin S. Stimulated Brillouin scattering gyroscope[P].

    [25] Minardo A, Zeni L, Coscetta A et al. Distributed optical fiber sensor applications in geotechnical monitoring[J]. Sensors, 21, 7514(2021).

    [26] Qian K, Wang F, Wang R et al. Enhanced sensitivity of fiber laser sensor with Brillouin slow light[J]. Optics Express, 27, 25485-25492(2019).

    [27] Sharma D K, Tripathi S M. Optical performance of tellurite glass microstructured optical fiber for slow-light generation assisted by stimulated Brillouin scattering[J]. Optical Materials, 94, 196-205(2019).

    [28] Wang W[M]. Interferometric fiber optic gyroscope technology, 46-48(2010).

    [29] Eggleton B J, Poulton C G, Rakich P T et al. Brillouin integrated photonics[J]. Nature Photonics, 13, 664-677(2019).

    [30] Damzen M J, Vlad V, Mocofanescu A et al[M]. Stimulated Brillouin scattering: fundamentals and applications, 89-92(2003).

    [31] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972).

    [32] Gyger F[D]. Brillouin scattering in gas-filled hollow-core fibres, 153-158(2020).

    [33] Yang F, Gyger F, Thévenaz L. Intense Brillouin amplification in gas using hollow-core waveguides[J]. Nature Photonics, 14, 700-708(2020).

    [34] Rank D H, Wiggins T A, Wick R V et al. Stimulated Brillouin effect in high-pressure gases[J]. Journal of the Optical Society of America, 56, 174-175(1966).

    [35] Tang X Z, Yao G, Wang X J. Investigation of stimulated Brillouin scattering of KrF laser in SF6 gas[J]. High Power Laser and Particle Beams, 7, 283-287(1995).

    [36] Ge C W, Zhang W J, Wang P et al. Influence of scatter medium purity on backward SBS light[J]. Laser & Optoelectronics Progress, 37, 18-22(2000).

    [37] Bai Z X, Yuan H, Liu Z H et al. Stimulated Brillouin scattering materials, experimental design and applications: a review[J]. Optical Materials, 75, 626-645(2018).

    [38] Hasi W L J, Lü Z W, He W M. Three kinds of stimulated Brillouin scattering media[J]. Laser Journal, 24, 8-10(2003).

    [39] Brewer R G, Rieckhoff K E. Stimulated Brillouin scattering in liquids[J]. Physical Review Letters, 13, 334-336(1964).

    [40] Xu J, Guo Y N, Luo N N et al. Influence of water temperature on temporal coherence of stimulated Brillouin scattering[J]. Acta Optica Sinica, 40, 0929001(2020).

    [41] Park H, Lim C, Yoshida H et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 45, 5073-5075(2006).

    [42] Xu J, Guo Y N, Luo N N et al. Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering[J]. Acta Physica Sinica, 70, 154205(2021).

    [43] Lü Z W, Lü Y L, Yang J Y. Optical limiting effect based on stimulated Brillouin scattering in CCl4[J]. Chinese Physics, 12, 507-513(2003).

    [44] Liu J, Bai J H, Ni K et al. Attenuation characteristics of laser beam in water[J]. Acta Physica Sinica, 57, 260-264(2008).

    [45] Hasi W L J, Lu Z W, Gong S et al. Investigation of stimulated Brillouin scattering media perfluoro-compound and perfluoropolyether with a low absorption coefficient and high power-load ability[J]. Applied Optics, 47, 1010-1014(2008).

    [46] He X, Harris G I, Baker C G et al. Strong optical coupling through superfluid Brillouin lasing[J]. Nature Physics, 16, 417-421(2020).

    [47] Liu L, Lü Z W, He W M et al. Study of SBS pulse waveform in a one-cell system[J]. Chinese Journal of Lasers, 27, 53-58(2000).

    [48] Wei X F, Yuan X D, Ding L et al. Research on the high power laser output using stimulated Brillion scattering pulse compression[J]. High Power Laser and Particle Beams, 11, 129-133(1999).

    [49] Hasi W L J, Lü Z W, He W M et al. Study on Brillouin amplification in different liquid media[J]. Acta Physica Sinica, 54, 742-748(2005).

    [50] Shi J L, Xu J, Guo Y N et al. Dependence of stimulated Brillouin scattering in water on temperature, pressure, and attenuation coefficient[J]. Physical Review Applied, 15, 054024(2021).

    [51] Barocchi F, Mancini M, Vallauri R. Stimulated Brillouin scattering in liquid mixtures (hypersonic-velocity measurements as a function of concentration)[J]. Il Nuovo Cimento B (1965-1970), 49, 233-236(1967).

    [52] Yoshida H, Kmetik V, Fujita H et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 36, 3739-3744(1997).

    [53] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 34, 634-644(1998).

    [54] Lian Y D, Wang Y H, Zhang Y Q et al. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 33, 051001(2021).

    [55] Bai Z X, Wang Y L, Lu Z W et al. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression[J]. Applied Sciences, 6, 29(2016).

    [56] Liu H X, Li Y L, Yang C et al. 1.35 ns SBS laser pulse[J]. Optik, 184, 394-398(2019).

    [57] Yin T C[D]. Study on narrow-linewidth fiber lasers for gas detection applications, 71-75(2020).

    [58] Wang Y Y, Xu L L, Jiang L et al. Power threshold reduction and laser efficiency improvement of Brillouin fiber laser based on an As2S3 chalcogenide fiber via a mode field adaptor[J]. Optics Communications, 484, 126678(2021).

    [59] Abedin K S. Stimulated Brillouin scattering in single-mode tellurite glass fiber[J]. Optics Express, 14, 11766-11772(2006).

    [60] Deroh M, Sylvestre T, Chretien J et al. Towards athermal Brillouin strain sensing based on heavily germania-doped core optical fibers[J]. APL Photonics, 4, 030801(2019).

    [61] Liao M S, Yan X, Qin G S et al. A highly non-linear tellurite microstructure fiber with multi-ring holes for supercontinuum generation[J]. Optics Express, 17, 15481-15490(2009).

    [62] Habib M S, Habib M S, Hasan M I et al. Highly nonlinear polarization maintaining two zero dispersion spiral photonic crystal fiber using artificial defects[J]. Optical Fiber Technology, 19, 539-542(2013).

    [63] Habib M S, Habib M S, Hasan M I et al. Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding[J]. Optik, 125, 1011-1015(2014).

    [64] Amin M N, Faisal M. Highly nonlinear polarization-maintaining photonic crystal fiber with nanoscale GaP strips[J]. Applied Optics, 55, 10030-10037(2016).

    [65] Zhao T T, Lian Z G, Benson T et al. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation[J]. Optical Materials, 73, 343-349(2017).

    [66] Finazzi V, Monro T M, Richardson D J. Confinement loss in highly nonlinear holey optical fibres[C], 524-525(2002).

    [67] Cherif R, Zghal M, Tartara L. Characterization of stimulated Brillouin scattering in small core microstructured chalcogenide fiber[J]. Optics Communications, 285, 341-346(2012).

    [68] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [69] Xu W, Xu C X, Qin F F et al. Whispering-gallery mode lasing from polymer microsphere for humidity sensing[J]. Chinese Optics Letters, 16, 081401(2018).

    [70] Yang Y, Zhao S, Shen Y et al. Generation of stimulated Brillouin scattering in a packed CaF2 micro-disk resonator with ultra-high-Q factor[J]. Journal of Infrared and Millimeter Waves, 40, 865-869(2021).

    [71] Pant R, Byrnes A, Poulton C G et al. Photonic chip based tunable slow and fast light via stimulated Brillouin scattering[J]. Optics Letters, 37, 969-971(2012).

    [72] Su X X, Dou Z L, Lee H P. Stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide with slightly-misaligned material and structural axes: misalignment-sensitive behaviors and underlying physics[J]. Journal of Optics, 24, 045002(2022).

    [73] Su X X, Li X S, Wang Y S et al. Theoretical study on the stimulated Brillouin scattering in a sub-wavelength anisotropic waveguide: acousto-optical coupling coefficients and effects of transverse anisotropies[J]. Journal of the Optical Society of America B, 34, 2599-2609(2017).

    [74] Marpaung D, Morrison B, Pagani M et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity[J]. Optica, 2, 76-83(2015).

    [75] Chauhan N, Isichenko A, Liu K K et al. Visible light photonic integrated Brillouin laser[J]. Nature Communications, 12, 4685(2021).

    [76] Cheng T L, Liao M S, Gao W Q et al. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Optics Express, 20, 28846-28854(2012).

    [77] Yan J, Wang D N, Li X. An erbium-doped whispering-gallery-mode microlaser for sensing[J]. Journal of Lightwave Technology, 39, 5177-5182(2021).

    [78] Mondragón-Ochoa J S, José G R, Cigdem T et al. Microwave-assisted in situ laser dye incorporation into high sensitivity whispering gallery mode microresonators[J]. Journal of Physics D: Applied Physics, 55, 055101(2022).

    [79] Lai Y H, Lu Y K, Suh M G et al. Observation of the exceptional-point-enhanced Sagnac effect[J]. Nature, 576, 65-69(2019).

    [80] Wang H M, Lai Y H, Yuan Z Q et al. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope[J]. Nature Communications, 11, 1610(2020).

    [81] Ren J, Hodaei H, Harari G et al. Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope[J]. Optics Letters, 42, 1556-1559(2017).

    [82] Li J, Suh M G, Vahala K. Microresonator Brillouin gyroscope[J]. Optica, 4, 346-348(2017).

    [83] Lai Y H, Suh M G, Lu Y K et al. Earth rotation measured by a chip-scale ring laser gyroscope[J]. Nature Photonics, 14, 345-349(2020).

    [84] Shen Z. Brillouin-scattering-induced transparency and non-reciprocal light storage[M]. Experimental research of cavity optomechanics. Springer theses, 65-80(2021).

    [85] Cheng M T, Ye G L, Zong W W et al. Single photon scattering in a pair of waveguides coupled by a whispering-gallery resonator interacting with a semiconductor quantum dot[J]. Chinese Physics Letters, 33, 024205(2016).

    [86] Meng H, Eichler H J. Nd:YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas[J]. Optics Letters, 16, 569-571(1991).

    [87] Wang T Q, Kang Z J, Meng D D et al. Application progress of the stimulated Brillouin scattering phase conjugate mirror in high power nanosecond lasers[J]. Infrared and Laser Engineering, 50, 20211024(2021).

    [88] Thomas P J, van Driel H M, Stegeman G I. Possibility of using an optical fiber Brillouin ring laser for inertial sensing[J]. Applied Optics, 19, 1906-1908(1980).

    [89] Huang S Y, Toyama K, Nicati P A et al. Brillouin fiber optic gyro with push-pull phase modulator and synthetic heterodyne detection[J]. Proceedings of SPIE, 1795, 48-59(1993).

    [90] Raab M, Quast T. Two-color Brillouin ring laser gyro with gyro-compassing capability[J]. Optics Letters, 19, 1492-1494(1994).

    [91] Hotate K. Development of fiber-optic gyros and technologies for next generation[J]. The Review of Laser Engineering, 26, 297-303(1998).

    [92] Christensen C A, Liu Y Y, Yahalom R et al. A ring laser gyro with fast fight and slow light based on stimulated Brillouin scattering in fiber[J]. Proceedings of SPIE, 10934, 109340S(2019).

    [93] Yan F P, Shan Y, Jian S S. Study on polarization property in stimulated Brillouin scattering fiber optic gyros (SBS-FOG)[J]. Chinese Journal of Lasers, 28, 913-917(2001).

    [94] Yan F P, Shan Y, Jian S S. Theoretical analysis of thermal effect for the stimulated Brillouin scattering fiber optic gyros[J]. Piezoelectrics & Acoustooptics, 23, 97-99(2001).

    [95] Yan F P, Shan Y, Jian S S. Study on threshold power of the fiber source for the stimulated Brillouin scattering fiber optic gyros (SBS-FOG)[J]. Chinese Journal of Lasers, 27, 790-794(2000).

    [96] Zhang Y[D]. Research on BFOG and Brillouin fiber ring resonator, 11-12(2009).

    [97] Li X Y, Zhang Y, Wang R et al. Optical fiber ring resonator based on Brillouin fiber optic gyro[J]. Opto-Electronic Engineering, 35, 111-116(2008).

    [98] Zhang Y[D]. Beat frequency analysis and fiber ring resonator design for B-FOG, 9-11(2008).

    [99] Chong X Q[D]. Research on four-mode differential Brillouin fiber-optic gyroscope and its laser’s frequency stable technology, 9-10(2007).

    [100] Li X Y, He Z, Zhang Y et al. Beat frequency stability of stimulated Brillouin fiber gyroscope[J]. Journal of Chinese Inertial Technology, 18, 338-342(2010).

    [101] He Z[D]. Research on the key technologies of Brillouin fiber optic gyroscope, 10-11(2011).

    [102] Hong W, Li X Y, Yang H R et al. New scheme of increasing dynamic range of Brillouin fiber optic gyroscope[J]. Journal of Chinese Inertial Technology, 19, 106-110(2011).

    [103] Liu Y, Lang C P, Wei X C et al. Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper[J]. Optics Express, 25, 7797-7806(2017).

    [104] Kuo P S, Bravo-Abad J, Solomon G S. Second-harmonic generation using quasi-phasematching in a GaAs whispering-gallery-mode microcavity[J]. Nature Communications, 5, 3109(2014).

    [105] Zhang Y T[D]. Study on the optical properties of microcavity based on whispering gallery mode, 38-40(2020).

    [106] Grudinin I S, Ilchenko V S, Maleki L. Ultrahigh optical Q factors of crystalline resonators in the linear regime[J]. Physical Review A, 74, 063806(2006).

    [107] Li A Z, Yu J B, Zhang M et al. An Yb3+-Ho3+codoped glass microsphere laser in the 2.0 μm wavelength regions[J]. IEEE Photonics Technology Letters, 30, 1543-1546(2018).

    [108] Lee H, Chen T, Li J et al. Ultra-low-loss optical delay line on a silicon chip[J]. Nature Communications, 3, 867(2012).

    [109] Li J, Lee H, Chen T et al. Characterization of a high coherence, Brillouin microcavity laser on silicon[J]. Optics Express, 20, 20170-20180(2012).

    [110] Li J, Lee H, Vahala K J. Microwave synthesizer using an on-chip Brillouin oscillator[J]. Nature Communications, 4, 2097(2013).

    [111] Loh W, Green A A S, Baynes F N et al. Dual-microcavity narrow-linewidth Brillouin laser[J]. Optica, 2, 225-232(2015).

    [112] Bauters J F, Heck M J R, John D D et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding[J]. Optics Express, 19, 24090-24101(2011).

    [113] Behunin R O, Otterstrom N T, Rakich P T et al. Fundamental noise dynamics in cascaded-order Brillouin lasers[J]. Physical Review A, 98, 023832(2018).

    [114] Salit M K, Wu J F, Qiu T Q. Single pump cascaded stimulated Brillouin scattering (SBS) ring laser gyro[P].

    [115] Salit M K, Wu J F, Qiu T Q. Stimulated Brillouin scattering (SBS) gyro with coupled resonator for frequency-dependent output coupling[P].

    [116] Nelson K D, Puckett M W, Wu J F. A ring-laser gyro based on stimulated Brillouin scattering in silicon nitride waveguides[C](2020).

    [117] Christensen C A, Zavriyev A, Cummings M et al. Compact, highly sensitive optical gyros and sensors with fast-light[J]. Proceedings of SPIE, 9616, 96160N(2015).

    [118] Silver J M, del Bino L, Woodley M T M et al. Nonlinear enhanced microresonator gyroscope[J]. Optica, 8, 1219-1226(2021).

    [119] Wiersig J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection[J]. Physical Review Letters, 112, 203901(2014).

    [120] Wiersig J. Sensors operating at exceptional points: general theory[J]. Physical Review A, 93, 033809(2016).

    [121] Chen W J, Özdemir Ş K, Zhao G M et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-196(2017).

    [122] Lai Y H, Suh M G, Li J et al. A chip-based Brillouin laser gyroscope[C](2020).

    [123] Sunada S. Large Sagnac frequency splitting in a ring resonator operating at an exceptional point[J]. Physical Review A, 96, 033842(2017).

    [124] Yang L, Zhuang Y Y, Liu Y et al. Progress of whispering gallery mode resonator[J]. College Physics, 40, 41-54(2021).

    [125] Zhang X Y, Kang M, Liu H G et al. Sensing applications of exceptional points in non-Hermitian optical systems[J]. Chinese Journal of Lasers, 47, 0300001(2020).

    Tools

    Get Citation

    Copy Citation Text

    Chenchen Liu, Chengchun Gao, He Yang, Xiaobin Xu, Ningfang Song. Review on Stimulated Brillouin Scattering Effects and Their Applications in Integrated Optical Gyroscopes[J]. Chinese Journal of Lasers, 2022, 49(19): 1906004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber optics and optical communication

    Received: May. 25, 2022

    Accepted: Sep. 13, 2022

    Published Online: Oct. 12, 2022

    The Author Email: Yang He (yanghe@buaa.edu.cn)

    DOI:10.3788/CJL202249.1906004

    Topics