Chinese Journal of Lasers, Volume. 26, Issue 12, 1061(1999)
Selecting Lasing Wavelength by Varying Fiber Length
[1] [1] Rudiger Paschotta, Johan Nilsson, Anne C. Tropper et al.. Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron., 1997, 33(7):1049
[2] [2] J. Y. Allain, M. Monerie, H. Poignant. Ytterbium-doped fluoride fibre laser operating at 1.02 μm. Electron. Lett., 1992, 28(11):988~989
[3] [3] J. R. Armitage, R. Wyatt, B. J. Ainslie et al.. Highly efficient 980 nm operation of an Yb3+-doped silica fibre laser. Electron. Lett., 1989, 25(5):298~299
[4] [4] D. C. Hanna, R. M. Percival, I. R. Perry et al.. An ytterbium-doped monomode fiber laser: broadly tunable operation from 1.010 μm to 1.162 μm and three-level operation at 974 nm. J. Mod. Optics, 1990, 37(4):517~526
[5] [5] D. C. Hanna, R. M. Percival, I. R. Perry et al.. Continuous-wave oscillation of a monomode ytterbium-doped fibre laser. Electron. Lett., 1988, 24(17):1111~1113
[6] [6] Stephen A. Payne, L. L. Chase, Larry K. Smith et al.. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+. IEEE J. Quantum Electron., 1992, 28(11):2619~2360
[7] [7] D. E. McCumber. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 1964, 136(4A):A954~A957
[8] [8] Xuelu Zou, Hisayoshi Toratani. Evaluation of spectroscopic properties of Yb3+-doped glasses. Phys. Rev. B, 1995, 52(22):889~896
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Selecting Lasing Wavelength by Varying Fiber Length[J]. Chinese Journal of Lasers, 1999, 26(12): 1061