Laser & Optoelectronics Progress, Volume. 61, Issue 7, 0706014(2024)

Compact Free-Running InGaAs/InP Single-Photon Detector for Real-Time Space Laser Communication (Invited)

Qixia Tong1,2, Yong Lei1,2, Xiangwei Shen1,2, Chen Chen1,2, Wei Chen1,2, Jianglin Zhao1,2, Li Ren1,2, Dajian Cui1,2、*, Liang Wang3, and Shanyong Cai3
Author Affiliations
  • 1Chongqing Optoelectronics Research Institute, Chongqing 400060, China
  • 2Chongqing Key Laboratory of Quantum Information Chips and Devices, Chongqing 400060, China
  • 3State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    References(38)

    [1] Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 19, 57-96(2017).

    [2] Fisher E, Underwood I, Henderson R. A reconfigurable single-photon-counting integrating receiver for optical communications[J]. IEEE Journal of Solid-State Circuits, 48, 1638-1650(2013).

    [3] Chitnis D, Collins S. A SPAD-based photon detecting system for optical communications[J]. Journal of Lightwave Technology, 32, 2028-2034(2014).

    [4] Sun X L, Skillman D R, Hoffman E D et al. Free space laser communication experiments from Earth to the Lunar Reconnaissance Orbiter in lunar orbit[J]. Optics Express, 21, 1865-1871(2013).

    [5] Zhang Y B, Deng R J, Liu H S et al. Parameter design and experimental verification of taiji program inter-satellite laser communication[J]. Chinese Journal of Lasers, 50, 2306002(2023).

    [6] Cesarone R J, Abraham D S, Shambayati S et al. Deep-space optical communications[C], 410-423(2011).

    [7] Ao X Y, Yang Q, Dai X X et al. Real-time free-space optical communication technology[J]. Chinese Journal of Lasers, 49, 1206004(2022).

    [8] Boroson D M, Robinson B S, Murphy D V et al. Overview and results of the lunar laser communication demonstration[J]. Proceedings of SPIE, 8971, 89710S(2014).

    [9] Edwards B L, Israel D J, Vithlani S K. Latest changes to NASA’s laser communications relay demonstration project[J]. Proceedings of SPIE, 10524, 105240P(2018).

    [10] Biswas A, Srinivasan M, Piazzolla S et al. Deep space optical communications[J]. Proceedings of SPIE, 10524, 105240U(2018).

    [11] Sodnik Z, Heese C, Arapoglou P D et al. European deep-space optical communications program[J]. Proceedings of SPIE, 10524, 105240Q(2018).

    [12] Zhou X Y, Zhai L, Liu J. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 1, R07(2022).

    [13] Guo K P, Tang Z, Chou X X et al. Printable organic light-emitting diodes for next-generation visible light communications: a review[J]. Advanced Photonics Nexus, 2, 044001(2023).

    [14] Zhang J, Yao E, Ke S Y et al. Optimal design of charge-free layer InGaAs/Si avalanche photodetector[J]. Acta Optica Sinica, 44, 0504001(2024).

    [15] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 3, 696-705(2009).

    [16] Liao S K, Cai W Q, Liu W Y et al. Satellite-to-ground quantum key distribution[J]. Nature, 549, 43-47(2017).

    [17] Cui D J, Ao T H, Xi S Q et al. Research progress of InGaAs single-photon avalanche focal plane(invited)[J]. Infrared and Laser Engineering, 52, 20230016(2023).

    [18] Zimmermann H, Steindl B, Hofbauer M et al. Integrated fiber optical receiver reducing the gap to the quantum limit[J]. Scientific Reports, 7, 2652(2017).

    [19] Steindl B, Hofbauer M, Schneider-Hornstein K et al. Single-photon avalanche photodiode based fiber optic receiver for up to 200 Mb/s[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3801308(2018).

    [20] Zhang L, Chitnis D, Chun H et al. A comparison of APD- and SPAD-based receivers for visible light communications[J]. Journal of Lightwave Technology, 36, 2435-2442(2018).

    [21] Khalighi M A, Uysal M. Survey on free space optical communication: a communication theory perspective[J]. IEEE Communications Surveys & Tutorials, 16, 2231-2258(2014).

    [22] Robinson B S, Kerman A J, Dauler E A et al. 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector[J]. Optics Letters, 31, 444-446(2006).

    [23] Acerbi F, Anti M, Tosi A et al. Design criteria for InGaAs/InP single-photon avalanche diode[J]. IEEE Photonics Journal, 5, 6800209(2013).

    [24] Fang Y Q, Chen W, Ao T H et al. InGaAs/InP single-photon detectors with 60% detection efficiency at 1550 nm[J]. The Review of Scientific Instruments, 91, 083102(2020).

    [25] Signorelli F, Telesca F, Conca E et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 3801310(2022).

    [26] Wang L, Liu B, Li Z K et al. Target recognition and tracking method based on single pixel single photon detection[J]. Semiconductor Optoelectronics, 44, 272-276(2023).

    [27] Hopman P I, Boettcher P W, Candell L M et al. An end-to-end demonstration of a receiver array based free-space photon counting communications link[J]. Proceedings of SPIE, 6304, 63040H(2006).

    [28] Wang C, Wang J Y, Xu Z Y et al. Afterpulsing effects in SPAD-based photon-counting communication system[J]. Optics Communications, 443, 202-210(2019).

    [29] Tian Y, Li Q, Ding W Q et al. High speed and high sensitivity InGaAs/InAlAs single photon avalanche diodes for photon counting communication[J]. Journal of Lightwave Technology, 40, 5245-5253(2022).

    [30] Jiang W H, Gao X J, Fang Y Q et al. Miniaturized high-frequency sine wave gating InGaAs/InP single-photon detector[J]. The Review of Scientific Instruments, 89, 123104(2018).

    [31] Ma J, Bai B, Wang L J et al. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution[J]. Applied Optics, 55, 7497-7502(2016).

    [32] Telesca F, Signorelli F, Tosi A. Double zinc diffusion optimization for charge persistence reduction in InGaAs/InP SPADs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 30, 3801207(2024).

    [33] Donnelly J P, Duerr E K, McIntosh K A et al. Design considerations for 1.06-μm InGaAsP-InP geiger-mode avalanche photodiodes[J]. IEEE Journal of Quantum Electronics, 42, 797-809(2006).

    [34] Mehdi A B, Lou X P, Dong M L et al. InGaAs/InP single-photon avalanche diodes performance variation with charge layer width and doping[C], 286-290(2017).

    [35] Ao T H, Zhao J L, Tong Q X et al. A study of temperature characteristics in In0.53Ga0.47As single photon avalanche diodes detector[J]. Semiconductor Optoelectronics, 43, 765-769(2022).

    [36] Calandri N, Sanzaro M, Tosi A et al. Charge persistence in InGaAs/InP single-photon avalanche diodes[J]. IEEE Journal of Quantum Electronics, 52, 4500107(2016).

    [37] Lee Y S, Chen K Y, Chien S Y et al. Characteristics of charge persistence in InGaAs/InP single-photon avalanche diode[J]. IEEE Photonics Technology Letters, 30, 1980-1982(2018).

    [38] Xu Q, Yu C, Chen W et al. Compact free-running InGaAs/InP single-photon detector with 40% detection efficiency and 2.3 kcps dark count rate[J]. IEEE Journal of Selected Topics in Quantum Electronics, 30, 6400107(2024).

    Tools

    Get Citation

    Copy Citation Text

    Qixia Tong, Yong Lei, Xiangwei Shen, Chen Chen, Wei Chen, Jianglin Zhao, Li Ren, Dajian Cui, Liang Wang, Shanyong Cai. Compact Free-Running InGaAs/InP Single-Photon Detector for Real-Time Space Laser Communication (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 2, 2024

    Accepted: Jan. 22, 2024

    Published Online: Apr. 18, 2024

    The Author Email: Dajian Cui (cuidj@cetccq.com.cn)

    DOI:10.3788/LOP240893

    CSTR:32186.14.LOP240893

    Topics